Apple LGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Chapter 52 Window Manager Update

This chapter documents new features of the Window Manager. The
complete reference to the Window Manager is in Volume 2, Chapter 25 of
the Apple IIGS Toolbox: Reference.

521

Apple IIGS Toolbox Reference, Volume 3 Beta Draft ‘ 30 August 1989

Error corrections

This section corrects some errors in the Window Manager documentation in the Apple 1IGs
Toolbox Reference.

» The manual’s description of setZoomrect is incorrect. The correct description is as
follows:

Sets the £zoomed bit of the window’s wrrame record to 0. The rectangle passed to
SetZoomRect then becomes the window’s zoom rectangle. The window’s size and
position when set ZoomRect is called becomes the window’s unzoomed size and
position, regardless of what the unzoomed characteristics were before set zoomrect
was called.
n Apple IIGS Toolbox Reference page 25-126, third line:
If wmTaskMask bit tmInfo (bit 15) = 1

should read:
If wmTaskMask bit tmInfo (bit 15) = 0

= When used with 2 window that does not have scroll bars, the call windNewRes calls the
window’s defProc to recompute window regions. A call to sizewWindow is not
necessary under these circumstances.

522 Apple IIGs Toolbox Reference,Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft . 30 August 1989

New features in the Window Manager

This section explains new features of the Window Manager, and clarifies points that were
not made explicit before.

» TaskMaster now brings application windows to the front after dragging is complete.
TaskMaster previously brought windows to the front before dragging.

» Using the setoriginMask call, a programmer can control the horizontal scrolling
characteristics of windows that TaskMaster scrolls. A common use of
SetOriginMask is to ensure that the window origin is aligned on an even pixel, so
that colors do not change if the display mode is changed between 320 and 640. When
using the call, be sure that the horizontal scroll value is a whole multiple of the mask
value. Otherwise, strange behavior can occur. As an extreme example, consider an
origin value of 32 and a scroll amount of 1. Using the right scroll arrow will not scroll the
window at all, and using the left one will scroll it by a value of 32. The new control value
for the scrolling is calculated by adding or subtracting the scroll value and the current
value and applying the mask. In this case adding 1 and masking results in the original
value. Subtracting 1 and masking results in a new value that is 32 less than the old value.

» Standard windows can now draw their titles in 16 colors regardless of mode.

s The grid parameter of the call Dragwindow has been renamed dragFlag. Bits 0
through 7 specify the grid value. Bits 8 through 14 are reserved bits; they must be set to
0. Bit 15 is a selection flag; if its value is 1, then the window will be brought to the top
after dragging.

= It is no longer possible to specify grid values of 256 or 512.

s The Window Manager now uses the same default desktop drawing scheme as the .
Finder. When the Window Manager starts up, it looks for a DeskMessage in the
message center. This DeskMessage is formatted as follows:

$00| _
— Reserved ~{ Long—Used by message center
$041 messType ~| Word—Message type: must be set to $0002
$06 | drawType —| Word—Indicates content of drawData
$08
: drawData - Array—Data for desktop; type specified in drawType

Chapter 52. Window Manager Update 523

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

drawType Indicates the type of data stored at drawbata:
0 drawData contains pattern information
1 drawbData contains picture information
drawData Contains the pattern or picture data for the desktop image. If

drawType is set to 0, then drawData contains 32 bytes of
pattern data, The pattern defines 64 pixels arranged in an 8-by-8
array. In 320 mode 4 bits are needed for each pixel; in 640 mode,
the system requires 2 bits per pixel. The system uses this pattern
to seed the desktop image.

If drawType is set to 1, then drawbata contains 32,000 bytes
of picture data; the system copies this data directly to screen
memory. See Chapter 16, “QuickDraw I1,” in the Toolbox
Reference for details on pattemn or picture images.

By loading a DeskMessage into the message center, your program can set a custom
desktop image.

s Window Manager now supports a new entry point, TaskMasterDA, that allows desk
accessories to use TaskMaster. Previously, desk accessories could not rely on
TaskMaster, because they had to work with applications that do not use TaskMaster.
Desk accessories obtain the data for their task record from the Desk Manager.
TaskMaster processes task records for desk accessories in the same way that it
processes application task records.

s The sizeWindow and Resizewindow tool calls now invoke the NotifyCtls
Control Manager tool call whenever the user changes the window size. This allows
applications to show a control in a constant position with respect to the lower or right
border of a window. For example, now the growControl control definition
procedure can automatically move controls in response to a user dragging the size box.

524 Apple IIGS Toolbox Reference,Volume 3

Apple 1IGS Toolbox Reference, Volume 3

Beta Draft -

30 August 1989

Alert windows

The new alertwindow call (described in “New Window Manager calls,” later in this
chapter) can be used to create alert windows for presenting the user with important
messages. An alert window is similar to a modal dialog box. It requires that the user click a
button in the window before doing anything else, and so provides a useful way to
communicate vital messages such as warnings or error reports. The call does all the work of
creating and displaying the window and contents for the alert, and returns the ID of the
button that the user chooses.

AlertWindow accepts a reference to a string that contains its message, and a reference
to an array of substitution strings. The substitution strings can be any of seven standard
strings (such as “OK,” “Continue,” and so on) or can be specified by the application and
stored in the buffer to which the substitution-string pointer refers. The format of the

AlertWindow input string is

$00 |

. size
$xx

. iconSpec
$xx separator
$xx

. messageText
$xx sep
$xx

. buttonStrings
$xx terminator

 Block

 Block

Byte

: Character array

Byte

: Character array

Bﬁe

Chapter 52 Window Manager Update ~ 52-5

Apple LGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

size A variable-length block that specifies the size of the alert window to
be displayed. Valid ASCII values for the first byte lie in the range from
0 through 9 and have the following meanings:

0 Custom size and position, specified by rectangle
definition (as shown below)
30-character display window
60-character display window
110-character display window
175-character display window
110-character display window
150-character display window
200-character display window
250-character display window
300-character display window

w ~J 0 bW N

(e

If the value of the first byte of size is not 0, then the block consists
only of that byte. If size s set to 0, then you must specify the custom
rectangle immediately after the size field:

= vi - Word—y cooridnate of upper-left corner
- hl —| Word—x cooridnate of upper-left comer
- v2 — Word—y cooridnate of lower-right corner
= h2 | Word—x cooridnate of lower-right corner

Since AlertwWindow provides a limited number of standard sizes, it
is possible to create alerts that display properly whether the Apple
TGS is in 320 or 640 mode. It is necessary, however, to design the text
and buttons carefully in order to make this work.

Table 52-1 shows the dimensions of the standard alert windows. This
table gives only an approximate idea of the size of each window.
Application code should not rely on the exact widths, heights, or
position of standard windows.

526 Apple IGS Toolbox Reference,Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

s Table 52-1 Standard alert window sizes

size value Height 320 Width 320 Height 640 Width 640
1 46 152 46 200

2 62 176 54 228

3 62 252 62 300

4 90 252 72 . 352

5 54 252 46 400

6 62 300 54 452

7 80 300 62 500

8 108 300 72 552

9 134 300 80 600
iconSpec A variable-length block that specifies the type of icon to be displayed

in the alert window. Valid ASCII values for the first byte lie in the range
from 0 through 9 and have the following meanings:

0 No icon

1 Custom icon; followed by an icon specification, as
shown below

Stop icon

Note icon

Caution icon

Disk icon

Disk swap icon

7-9 , Reserved

A N bW

If the first byte of iconSpec has a value other than 1, then the field
consists only of that byte. If the first byte is set to 1, then it must be
followed by an icon specification:

— imagePtr —~{ Long—Pointer to image data
= imageWwidth ~ Word—Width, in bytes, of the image data
L~ imageHeight ~/ Word—Height in scan lines, of the image data

Chapter 52 Window Manager Update 527

Apple IIGS Toolbox Reference, Volume 3 Beta Draft ‘ 30 August 1989

separator Specifies a character that will divide sub-strings in the remainder of
the Alertwindow input string. The separator field can contain any
character, but the character cannot appear in the message text or
button strings. The separator character divides the message from the
first button string and the button strings from each other. For
purposes of standardization, the slash (/) character is recommended,
unless you will be substituting pathnames.

Do not include a separator character in any substitution strings, The
Window Manager performs substitutions before scanning the alert
string for separators. For example, if the separator character is a slash
and a pathname containing several slashes is substituted for the string,
the resulting alert window will contain several more buttons than you
intended.

messageText Specifies the message to be displayed in the alert window, Any
characters allowed by LETextBox2 are allowed in the message text.
See “Special Characters” later in this chapter for additional
characteristics of Alertwindow message text. The total size of
message text, after substitution of strings, is limited to 1000
characters.

sep A separator character.

buttonStrings Specifies titles for up to three buttons to be displayed in the alert
window. If there is more than one title, then the titles must be
separated from one another by a separator character. These buttons
will be evenly spaced and centered at the bottom of the alert window.
The width of each button is the same and is set by the widest button
title. The maximum length of button text after substitution of strings
is 80 characters.

terminator Marks the end of the alert string. Must be set to 0 ($00).

528 Apple IIGS Toolbox Reference,Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Special characters

The following special characters can be embedded in the message text and button
strings of an AlertWindow input string. If a special character is to appear in the text of a
button or message, you must enter it twice in the string. For example, if you want “+” to
appear in an alert message, you must enter it in the message string as “~~”.

~ A caret () designates the default button. The default button is the
button selected if the user presses the Return key on the keyboard. This
button will also appear outlined in bold on the screen. Only one button
can be the default button. After the caret, the button title must follow,
as for any other button. Other special characters may also appear after
the caret. A single caret in the body of message text has no effect and is
deleted from the message.

Substitute standard string. The number sign (#) must be followed by a
decimal number. Numbers 0 through 6 can be used. Numbers 7 through 9
are reserved and should not be used. The standard substitution strings are

#0 OK
#1 Cancel
#2 Yes
#3 No
#4 Try Again
#5 Quit
#6 Continue
* Substitute given string. The asterisk (*) character followed by an ASCII

decimal number from ‘0" through ‘9’ denotes a substitution string to be
inserted at that point. The asterisk and the following number will be
replaced by the corresponding string in the specified substitution array.
A pointer to the substitution array is passed as a parameter to the
AlertWindow call. The substitution array is defined as an array of
pointers. Table 52-2 shows the format of a substitution string array.

Chapter 52 Window Manager Update ~ 52-9

Apple 1IGS Toolbox Reference,

Volume 3 Beta Draft

= Table52-2 Substitution string array

LONGI0]
LONGI[1]
LONGI2]
LONG[3]
LONG4]
LONGI[5]
LONGI6]
LONG[7]
LONGI8]
LONGI[9}

Substitution strings can be C strings or Pascal strings, or may be terminated by a carriage
return, A parameter to the AlertWindow tool call allows you to specify the type of

Pointer to string that will substitute for 0
Pointer to string that will substitute for *1
Pointer to string that will substitute for *2
Pointer to string that will substitute for * 3
Pointer to string that will substitute for x4
Pointer to string that will substitute for * 5
Pointer to string that will substitute for * 6
Pointer to string that will substitute for *7
Pointer to string that will substitute for * 8
Pointer to string that will substitute for * 9

strings in the substitution array.

Alert window example

Following are some examples of alert strings that can be passed to AlertWindow in

65816 Assembly language syntax.

A simple alert string:

c'13/Text of Message/Button 1',i1'0°

30 August 1989

Size 50 high! I Messa B tton titl \ Zero terminates alert
by 200 wide.) \1c0P ge utton itte- '

Tth of Message

Button 1 |

52-10 Apple IIGs Toolbox Reference,Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft =~ - 30 August 1989

A more complex alert string:

dc ¢'51/This is the *0 of *3 élert *2*]1 and standard!
dc c'text called "#4" /!
dc c' #0,Really/*4/Yo!"',i1'0"

This is the message text of an alert window and standard
text called “Try Again.”

| Door #2] [ve!

Where the substitution array =

sub0
subl
sub2
sub3
sub4

dc
dc
dc
dc
dc
de

i4'sub0, subl, sub2, sub3, sub4"
c'message text',il'0?
c'dow',i1'0"

c'win',i1'13"

c'an',il'Q?

c'Door #2',i1'0"

Chapter 52 Window Manager Update 52-11

Apple IIGS Toolbox Reference, Volume 3

Beta Draft

30 August 1989

TaskMaster result codes

Table 52-3 lists all the possible TaskMaster result codes.

s Table 52-3 TaskMaster result codes

Name Value Description

Null $0000 Successful

mouseDownEvt $0001 Event Code -

mouseUpEvt $0002 Event Code -

keyDownEvt $0003 Event Code -

autoKeyEvt $0005 Event Code -

updateEvt $0006 Event Code -

activateEvt $0008 Event Code -

switchEvt $0009 Event Code -

deskAccEvt $000A Event Code -

driverEvt $000B Event Code -

applEvt $000C Event Code -

app2Evt $000D Event Code -

app3Evt $000E Event Code -

app4Evt $000F Event Code -

wNoHit $0000 Alias for no event

inNull $0000 Alias for no event

inKey $0003 Alias for keystroke

inButtDwn $0001 Alias for button down

inUpdate $0006 Alias for update event

wInDesk $0010 On Desktop

wInMenuBar $0011 On System Menu Bar
wClickCalled $0012 systemclick called (returned only as action)
wInContent $0013 In content region

wInDrag $0014 In drag region

wInGrow $0015 In grow region, active window only
wInGoAway $0016 In go-away region, active window only

5212 Apple IIGS Toolbox Reference,Volume 3

Apple 1IGS Toolbox Reference, Volume 3

wInZoom
wInInfo
wInSpecial
wInDeskItem
winFrame
wInactMenu
wClosedNDA
wCalledSysEdit
wTrackZoom
wHitFrame

wInControl

wInControlMenu

wInSysWindow

$0017
$0018
$0019
$001A
$001B
$001C
$001D
$001E
$001F
$0020
$0021

$0022

$8000

Beta Draft

In zoom region, active window only

In information bar

Item ID selected was 250-255

Item ID selected was 1-249

In frame, but not on anything else

Inactive menu item selected

Desk accessory closed (returned only as action)
SystemEdit called (returned only as action)

Zoom box clicked, but not selected (action only)
Button down on frame, made active (action only)

Button or keystroke in control (can be returned as
event code and as action)

Control handled menu item

High bit set for system windows

30 August 1989

Chapter 52 Window Manager Update 52-13

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft - 30 August 1989

Window Manager data structures

This section discusses the format and content of changed Window Manager data
structures.

Window record

The window record data structure has been redefined. The new definition is illustrated in
Figure 52-1.

52.14 Apple IIGS Toolbox Reference,Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

= Figure 52-1

$00

$AE

$B2

$86 [

$BA [

$BE

§C2

506 [

$CA

$CE [

$D2

wNext

$04

wDefProc

wRefCon

wContDraw

wReserved

wStructRgn

wContRgn

wUpdateRgn

wCtls

wFrameCtls

wFrame

$D4 !

wCustom

Window record definition

Long—Pointer to next window; NIL at end of list

. Array—Window’s grafPort (170 bytes)

Long—Pointer to contro} definition procedure

Long—Reserved for application use

Long—Pointer to routine to draw window contents

Long—Reserved for use by Window Manager; do not use

Long—Handle to window’s structure region

Long—Handle to window's content region

Long—Handle to window's update region

Long—Handle to first control in window’s control chain

Long—Handle to first control in window's frame

Word—Flags for window

: Array—Additional data for window definition procedure

Chapter 52 Window Manager Update 52-15

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

wReserved

wEFrame

fTitle
fClose
fAlert
fRScroll
fBScroll
fGrow
fFlex
fZoom
fMove
finfo
fZoomed

A new data field reserved by Apple Computer, Inc. for future
expansion.

A bit flag, containing flags specifying the window frame. All of the bits
in this flag are described in Chapter 25, “Window Manager,” in

Volume 2 of the Toolbox Reference. Some of these bits may be used by
window definition procedures. The following table lists the bits that
may be used by window defProcs. :

bit 15
bit 14
bit 13
bit 12
bit 11
bit 10
bit 9
bit 8
bit 7
bit 4
bit 1

52.16 Apple 1IGS Toolbox Reference,Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Task record

Figure 52-2 defines the new format for the task record. This new record layout includes
several new fields, each of which is set by TaskMaster every time your program calls
TaskMaster. For information on the old fields, see Chapter 25, “Window Manager,” in the
Toolbox Reference.

TaskMaster will still accept old-format task records; however, if your program uses any of
the new TaskMaster features (see wmTaskMask), it must use the new record layout.

Chapter 52 Window Manager Update 52-17

Apple 1IGS Toolbox Reference,

Volume 3 Beta Draft

s Figure 52-2 Task Record definition
$00 wmihat ~| Word—Same as before
$02 |
wmMessage - Long—-Same as before
$06 _
wmWhen —| Long—Same as before
$0A _
wnWhere — Long—Same as before
$OE wnModifiers — Word—Same as before
$10 _
wnTaskData — Long-~Same as before
$14 |
wmTaskMask — Long—Flags controlling TaskMaster function
$18 N
wmLastClickTick —{ Long—System tick value at last mouse click
$1C wmclickcount — Word—Type of last click (single double, triple)
$1E -
wmTaskpata2 — Long—Additional TaskMaster return data
$22 -
wmTaskData3 -4 Long—Additional TaskMaster retumn data
$26 -
wnTaskDatad — Long-—Additional TaskMaster retumn data
$2A
© wmiastclickpt . Point—Location of last mouse click

5218 Apple IIGs Toolbox Reference, Volume 3

30 August 1989

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

taskMask Flag controlling TaskMaster function:
Reserved bits 21-31 Must be set to 0
tmIdleEvents bit 20 Controls whether TaskMaster sends idle events to the

target control in the active window:
1 - Send idle events
0 - Do not send idle events
tmMultiClick bit 19 Controls whether TaskMaster returns multiclick
information in the Task Record:
1 - Return multiclick information
0 -Do not return multiclick information
tmCont rolMenu bit 18 Controls whether TaskMaster passes menu events to
controls in the active window:
1 - Pass menu events
0 - Do not pass menu events
tmControlKey bit 17 Controls whether TaskMaster passes key events to
controls in the active window:
1 - Pass key events
0 - Do not pass key events
tmContentControls
bit 16 Controls whether TaskMaster calls FindControl
and TrackControl when Findwindow retums
wInContent and the window is already selected:
1 - Track the control
0 - Do not track the control
tmInfo bit 15 Controls whether TaskMaster activates the window
when the user clicks in the info bar:
1 - Do not activate the window
0 - Activate the window
tmInactive bit 14 Controls whether TaskMaster returns wInactMenu
when the user selects an inactive menu item:
1-Retum wInactMenu
0 - Never return wInactMenu
tmCRedraw bit 13 Controls whether TaskMaster redraws controls
whenever an activate event occurs:
1 - Redraw controls
0 - Do not redraw controls
tmSpecial bit 12 Controls whether TaskMaster handles special menu
items (those with IDs < 256):
1 - Handle special menu items
0 - Do not handle special menu items

Chapter 52 Window Manager Update 52-19

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft v 30 August 1989

tmScroll bit 11 Controls whether TaskMaster enables scrolling and
activates inactive windows when the user clicks on
the scroll bar:
1 - Enable scrolling
0 - Do not enable scrolling

tmGrow bit 10 Controls whether TaskMaster calls Growwindow
when the user drags the size box:
1-Call Growwindow
0- Do not call Growwindow

tmZoom bit 9 Controls whether TaskMaster calls Trackzoom when
the user clicks in the zoom box:
1-Call Trackzoom
0- Do not call Trackzoom

tmClose bit 8 Controls whether TaskMaster calls TrackGoaway
when the user clicks in the close box:
1-Call TrackGoaway
0-Do not call TrackGoAway

tmContent bit 7 Controls whether TaskMaster activates the window
when the user clicks in the content region:
1 - Activate window
0 - Do not activate window

tmDragW bit 6 Controls whether TaskMaster calls DragWwindow
when the user drags in the drag region:
1-CallDragwindow
0- Do not call DragWwindow

tmSysClick bit 5 Controls whether TaskMaster calls systemClick
when the user clicks in the system window:
1-Call systemClick
0-Donotcall systemClick

tmOpenNDA bit 4 Controls whether TaskMaster calls openNDA when the
user selects a desk accessory:
1- Call opennDA
0- Do not call openNDA

tmMenuSel bit 3 Controls whether TaskMaster calls MenuSelect
when the user clicks in the menu bar:
1-CallMenuselect
0- Do not call Menuselect

tmFindwW bit 2 Controls whether TaskMaster calls Findwindow for
mouse-down events:
1-Call Findwindow
0- Do not call Findwindow

5220 Apple IIGS Toolbox Reference,Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft . 30 August 1989

tmUpdate bit 1 Controls whether TaskMaster handles update events:
1 - Handle update events
0 - Do not handle update events

tmMenuKey bit 0 Controls whether TaskMaster calls MenuKey to
handle menu key equivalents:
1-Call MenuKey
0- Do not call Menukey

Chapter 52. Window Manager Update 5221

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

New Window Manager calls

The following tool calls have been added to the Window Manager since publication of the
first two volumes of the Apple 1IGS Toolbox Reference.

AlertWindow $590E

Creates an alert window that displays a message referred to by alertStrRef. The message
can be either a C or a Pascal string, as specified by alertFlags. The subStrPtr parameter
points to an array of substitution strings for use with substitution characters. For more
detailed information, see “Alert Windows” earlier in this chapter.

Parameters

Stack before call

Previous contents
Space Word—Space for result
alertFlags Word—Flag word for call
- subStrPtr - Long—Pointer to substitution array
- alenStrRef - Long—Reference to alert string-alertFlags indicates type
<—S§P
Stack after call
Previous contents
Result Word—Button number selected
<—SP
Errors None

5222 Apple IIGS Toolbox Reference,Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

C extern pascal Word AlertWindow(alertFlags,
subStrPtr, alertStrRef);

Word alertFlags:;
Pointer subStrPtr;
Long alertStrRef;

alertFlags Contains flags that indicate the type of strings referenced by
alertStrRef; as well as the type of reference contained that field:

Reserved bits 3-15 Must be set to 0

referenceType bits 1-2 Indicate the type of reference stored in alertStrRef:
00 - alertSirRef is a pointer
01 - alentStrRef is a handle
10 - alertStrRefis a resource ID

stringType bit 0 Indicates type of string referred to by alertStrRef:
0 - C string (null-terminated)
1 - Pascal string

Chapter 52 Window Manager Update 52-23

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

CompileText $600E

Combines source text provided by your program with either custom or standard strings to
compile a result text string. For successful calls, this call allocates and correctly sizes a
handle to the result text string. That result string is a simple character array. Your program
must extract length information for the string from the handle. Note that your program
must dispose of this handle.

Control sequences in the source text direct the system to embed either custom or
standard strings into the result text string. These control sequences consist of two ASCII
characters: a flag character followed by a digit. The flag character indicates whether the
desired substitution string is custom or standard.

For standard strings, the flag character is #. The digit following the flag character selects
one of the following strings:

#0 OK

#1 Cancel
#2 Yes

#3 No

#4 Try Again
#5 Quit

#6 Continue

For custom strings, the flag character is *. CompileText obtains custom strings from a
substitution array built by your program and provided to the system in the parameters for
this call. The character following the flag character specifies which string to extract. Valid
values for this character lie in the range 0 through 9. Thus, a control sequence of *0 would
access the first string in your custom substitution array.

In order to include either of the flag characters as text in your compiled text, follow the
flag character with a second flag character (for example, ** results in * in the compiled
text string).

5224 Apple 1IGS Toolbox Reference,Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beia Draft 30 August 1989

Parameters

Stack before call

Previous contents
- Space - Long—Space for result
subType Word—Type of custom substitution strings
— subStringsPtr — Long—Pointer to substitution array
- srcStringPir - Long—Pointer to source string
srcSize Word—Length of source string pointed to by srcSiringPtr
<—SP
Stack after call
Previous contents
- SstringHandle - Long—Handle to result string
<—S§P
Errors $0E04 compileTooLarge Compiled text is larger than 64k
C extern pascal Handle CompileText (subType,
subStringsPtr, srcStringPtr, srcSize);
Word subType, srcSize;
Pointer subStringsPtr, srcStringPtr;
subType Indicates the type of strings stored in the substitution array pointed
to by subStringsPtr.
0 Array contains C strings
1 Array contains Pascal strings

Note that this field is ignored if your program does not use any
custom substitution strings.

Chapter 52 Window Manager Update

52-25

Apple 1IGS Toolbox Reference, Volume 3 Beia Draft 30 August 1989

subStringsPir Contains a pointer to your custom text substitution array. This array
contains from 1 to 10 long pointers to either C or Pascal strings (use
subType to indicate which type of string you have used). Embedded
control sequences in your source text direct the system to extract a
specific string from this array, Note that the system does not verify
string specifications against the size of this array; be careful to define
the correct number of string pointers in this array.

Note that this field is ignored if your program does not use any
custom substitution strings.

5226 Apple IIGS Toolbox Reference,Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

DrawInfoBar $550E

Redraws the info bar of the window specified by grafPortPtr. The method used to redraw
the info bar's interior is the routine specified by the winfoDefProc field of the
paramList passed to Newwindow when the window is created. The Window Manager
will automatically clip info bar drawing to the dimensions of the info bar, and to the
visible region of the window.

Parameters

Stack before call

Previous contents
- grafPortPir - Long—Pointer to GrafPort for window
<—8P

Stack after call

I Previous contents |

| | e
Errors None
C extern pascal void DrawInfoBar(graf?ortPtr) ;

Pointer grafPortPtr;

Chapter 52 Window Manager Update 52-27

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

EndFrameDrawing $5BOE

Restores Window Manager variables after a call to StartFrameDrawing.

Parameters This call has no input or output parameters. The stack is unaffected.
Errors None
C extern pascal void EndFrameDrawing();

5228 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGs Toolbox Reference, Volume 3 Beta Draft 30 August 1989

ErrorWindow $620E

Creates a dialog box displaying an error message for a specified error code. GS/OS error
codes are listed along with standard message text in “Error messages” later in this chapter.

Each error message is in alert string format and may require a substitution string (see “Alert
windows” earlier in this chapter for message format and text substitution information).
The system retrieves the error messages from a resource file of type $8020. The resource ID
for each message is formed as follows:

high-order word $07FF
low-order word error number

The default error messages are stored in the system resources file.You may assert custom
error message text by defining and opening another resource file containing type $8020
resources with appropriate resource IDs assigned to each error message. Make sure that
your resource file precedes the system resource file in the Resource Manager's search
sequence. A custom error message resource file need not define substitute messages for
all possible GS/OS errors; if the Resource Manager does not find a message in your file, it
will continue through the standard resource search sequence.

If ErrorWindow receives an undefined error code, it displays a dialog box with the
“Unknown Error” message ($72).

Parameters

Stack before call

Previous contents
Space - Word—Space for result
subType Word—Type of custom substitution string
- subStringPir - Long—Pointer to substitution string
errNum Word—GS/OS error number
<—SP
Stack after call
Previous contents
buttonNumber Word—Number of button pressed by the user
<—S§P

Chapter 52 Window Manager Update ~ 52-29

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

Errors Resource Manager errors returned unchanged

C extern pascal Word ErrorWindow(subType,

subStringPtr, errNum):;

Word subType, errNum;
Pointer subStringPtr;

subType Indicates the type of string pointed to by subStringPtr:
0 C string
1 Pascal string

Note that this field is ignored if the specified error message does not
use any substitution strings.

subStringPtr Contains a pointer to your custom text substitution string.

Note that this field is ignored if the specified error message does not
use any substitution strings.

5230 Applé 11GS Toolbox Reference,Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft . 30 August 1989

GetWindowMgrGlobals $580E

Returns a pointer to the Window Manager global data area.

A Warning An application should never make this call a

Parameters

Stack before call

Previous contents
- Space - Long—Space for result
<—SP
Stack after call
Previous contents
- globalDataPtr - Long—Pointer to the global data area
<—SP
Errors None
C extern pascal Pointer GetWindowMgrGlobals():;

Chapter 52 Window Manager Update 5231

Apple 1IGs Toolbox Reference, Volume 3 Beta Draft 30 August 1989

NewWindow2 $610E

Performs the same function as NewWindow, but allows you to-specify the input window
template as a resource (type rWwindParaml Of rWindParam2). See
Appendix E, “Resource Types,” later in this book for complete descriptions of all resource

types.

& Note: If you have specified the window template as a resource, then the references
within that template to title, color table, and control list must also be resources (or
NIL). '

< Note: In order to create an InfoBar with Newwindow2 using a window template
defined as a resource, you must specify a NIL infopraw procedure in the input
template and create an invisible window. After issuing the NewWindow2 call, set the
infoDraw routine by calling set Infobraw, then make the window visible with the
ShowWindow tool call.

Parameters

Stack before call

Previous contents
- Space - Long—Space for result
- titlPr - Long—Pointer to replacement title
- refCon - Long—RefCon to replace value in template
- contentDrawPir — Long—Pointer to replacement content draw Routine
- defProcPlr - Long—Pointer to replacement window definition procedure
paramTableDesc | Word—Indicates type of reference in paramTableRef
— paramTableRef - Long—Reference to window template
resourceType Word—Resource type of template referred to by paramTableRef
<—§P

5232 Apple IIGS Toolbox Reference,Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft - 30 August 1989

Stack after call

Previous contents

- grafPortPtr - Long—Pointer to window GrafPort; NIL if unsuccessful

<—SP

Errors Resource Manager errors returned unchanged
Memory Manager errors returned unchanged
Window Manager errors returned unchanged from
NewWindow
Control Manager errors returned unchanged from

NewControl2

C extern pascal Pointer NewWindow?2 (titlePtr, refCon,
contentDrawPtr, defProcPtr,
paramTableDesc, paramTableRef,
resourceType): '

Word paramTableDesc, resourceType;
Pointer titlePtr, contentDrawPtr, defProcPtr;
Long refCon, paramTableRef;

titlePtr, refCon, contentDrawPir, defProcPir
Newwindow2 will replace the values supplied in the template referred
to by paramTableRef with the contents from these fields, allowing you
to use a standard template and tailor it to create different windows.
To prevent NewWindow2 from replacing the template values, supply
NIL pointers in titlePtr, contentDrawPtr, and defProcPtr.

paramTableDesc Indicates the type of reference stored in paramTableRef.

$0000 paramTableRef contains a pointer to a window template
$0001 paramTableRef contains a handle to a window template
$0002 paramTableRef contains the resource ID of a window template

paramTableRef ~ Reference to a window template. The paramTableDesc field defines
the type of reference stored here. The resourceType field defines the
resource type for the template. The template must comply with the
format specification of resource type rWindparaml or
rwindParam2 (even if the template is not stored as a resource). See
Appendix E, “Resource Types,” in this book for information on the
format and content of these resources.

Chapter 52 Window Manager Update 52-33

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

resourceType Specifies the type of window template referred to by paramTableRef.
This value should be set correctly even if paramTableRef does not
contain a resource ID. Valid values are:

$800E rWindParaml
$800F rWindParam?2

5234 Apple I1GS Toolbox Reference,Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

ResizeWindow $5COE

Moves, resizes, and draws the window specified by grafPortPtr. The rectPtr parameter is a
pointer to the window’s content region. The hiddenFlag parameter is a Boolean
parameter; a TRUE value specifies that those portions of the window that are covered
should not be drawn. If the value is FALSE, the entire window is drawn, covered or not.

Parameters

Stack before call

Previous contents
hiddenFlag Word—Boolean; whether to hide covered area
- rectPtr - Long—Pointer to new content rectangle
- grafPortPtr - Long—Pointer to window’s GrafPort
<—SP
Stack after call
| Previous contents l
| | s
Errors None
C extern pascal void ResizeWindow(hiddenFlag, rectPtr,
grafPortPtr);
Word hiddenFlag;

Pointer rectPtr, grafPortPtr;

Chapter 52 Window Manager Update 52-35

Apple IIGS Toolbox Reference, Volume 3 Beia Draft ‘ 30 August 1989

StartFrameDrawing $5A0E

Sets up Window Manager data to draw a window frame. Should be called only by window
definition procedures. Must be balanced by a call to EndF rameDrawing when drawing is
completed.

Parameters

Stack before call

Previous contents
- windowPtr - Long—Pointer to window to draw
<—SP

Stack after call

I Previous contents |

| | s
Errors None
C extern pascal void StartFrameDrawing (windowPtr);

Pointer windowPtr;

5236 Apple I1IGS Toolbox Reference,Volume 3

Apple I1IGS Toolbox Reference, Volume 3

Beta Draft 30 August 1989

TaskMasterContent $5DOE

Internal routine that handles events inside the content region of a window. TaskMaster
invokes this routine if the tmContentControls bit of the taskMask field of the task
record is set to 1. Your program should never issue this call.

Pseudo-code:

if tmContentControls in wmTaskMask = 1
if mousedown in content region of frontmost window
set wmTaskData2, wmTaskData3, and wmTaskData4d4 to $00000000
call FindControl
put resulting partCode into low-order worxd of wmTaskData3

put controlHandle into wmTaskDataZ2

if partCode <> 0

call GetCtlID

put resulting control ID into wmTaskData4

call TrackControl with actionProcPtr set to SFFFFFFFF
if result <> 0 or part code corresponds to scroll bar

endif
else

endif

put resulting partCode into high-order word of .
wmTaskData3

if the control is a check box or radio button
Set or clear the value, as appropriate

endif

return (wInControl)

set low word of wmTaskData = wInControl

return (nullEvt)

set wmTaskData = pointer to window

return (wInContent)

endif
endif

TaskMasterContent calls FindControl. If the user did not press the button in a
control, then the routine returns a result code of wInContent, indicating that the mouse
is in the content region of the window.

If the user did press the mouse button in a control, TaskMasterContent calls
TrackCont rol, directing the Control Manager to use the appropriate action procedure

for the control.

Chapter 52 Window Manager Update 52-37

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft A 30 August 1989

When TrackControl returns, TaskMasterContent examines the part code. If the
part code is set to 0, then the user decided not to use the control (released the mouse
button outside the control). TaskMasterControl returns a result code of nullEvt
($0000).

If the part code is non-zero, then the user released the mouse button within a control.
TaskMasterContent returns a result code of wInControl, wmTaskbata2 contains
the control handle, wmTaskpata3 (low-order word) contains the part code identifying
the control in which the user pressed the mouse button, wmTaskpata3 (high-order word)
contains the part code identifying the control where the user released the mouse button,
and wmTaskData4 contains the control ID (if there is one defined).

5238 Apple 1IGS Toolbox Reference,Volume 3

Apple 1IGS Toolbax Reference, Volume 3 Beta Draft - 30 August 1989

TaskMasterDA $5FQE

This call is the TaskMaster entry point for desk accessories. Your program passes event
information obtained from the Desk Manager.

Parameters

Stack before call

Previous contents
Space Word—Space for result
eventMask Word—Not used
- taskRecPtr - Long—Pointer to extended Task Record
<—SP
Stack after call
Previous contents
taskCode Word—TaskMaster result code
<—SP
Errors None
C extern pascal Word TaskMasterDA (eventMask,
taskRecPtr);
Pointer taskRecPtr;
Word eventMask;

Chapter 52 Window Manager Update 52-39

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

TaskMasterKey $5EOE

Internal routine that handles keystroke events inside the content region of a window.
Your program should never issue this call.

Pseudo-code:
if tmMenuKey in wmTaskMask =1
if wmTaskData = 0 (menu did not take keystroke)
if tmInactive in wmTaskMask =1
if high word of wmTaskData <> 0
set low word of wmTaskData = 0
set high word of wmTaskData = ID of selected
inactive menu item
return (wInActMenu)
endif
goto CheckControls
endif
else (menu did take keystroke)
if low word of wmTaskData > 255
if tmControlMenu in wmTaskMask = 1
Call SendEventToCtl with targetOnlyFlag = TRUE
if result <> 0
set wmTaskData2 = handle of control that
took keystroke
set wmTaskData3 = result code from defProc
ID of control that took

it

set wmTaskData4
keystroke
dim the menu title for selected menu item
set low word of wmTaskData =
wInControlMenu
return (nullEvt)
endif
set low word of wmTaskData = ID of selected menu
item
set high word of wmTaskData = ID of menu from
which selection was made
return (wInMenuBar)
endif

5240 Apple 1IGs Toolbox Reference,Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

elseif low word of wmTaskData < 250
if tmOpenNDA in wmTaskMask = 0
set low word of wmTaskData = ID of selected menu
item
set high word of wmTaskData = ID of menu from
which selection was made
return (wInDeskItem)
endif
call OpenNDA
dim menu title for selected menu item
set low word of wmTaskData = wInDeskItem
return (nullEvt)
elseif tmSpecial of wmTaskMask = 0
set low word of wmTaskData = ID of selected menu iten
set high word of wmTaskData = ID of menu from which
selection was made
return (wInSpecial)
elseif top window is an application window
if tmControlMenu of wmTaskMask = 1
call SendEventToCtl with targetOnlyFlag = TRUE
if result <> 0
set wmTaskData2 = handle of control that
took keystroke
set wmTaskData3 = result code from defProc
set wmTaskData4 = ID of control that took
keystroke
dim the menu title for selected menu item
set low word of wmTaskData =
wInControlMenu
return (nullEvt)
endif
endif
set low word of wmTaskData = ID of selected menu item
set high word of wmTaskData = ID of menu from which
item was selected

return (wInSpecial)

Chapter 52 Window Manager Update 52-41

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft T 30 August 1989

elseif low word of wmTaskData = 250, 251, 252, 253, or 254
call SystemEdit
if SystemEdit returns FALSE
set low word of wmTaskData = ID of selected menu
item
set high word of wmTaskData = ID of menu from
which item was selected
return (wInSpecial)
endif
dim menu title for menu item.that was selected
set low word of wmTaskData = wCalledSysEdit
return (nullEvt)
elseif low word of wmTaskData = 255
call CloseNDAbyWinPtr for top window
dim menu title for menu item that was just selected
set low word of wmTaskData = wClosedNDA
return (nullEvt)
endif
endif
endif

CheckControls:

if tmControlKey in wmTaskMask = 1

set wmTaskData2, wmTaskData3, and wmTaskData4 = 0
if there is a front window
call SendEventToCtl with targetOnlyFlag = FALSE

if result <> 0

set wmTaskDataZ2 handle of control that took the

keystroke
set wmTaskData3 = result from defProc
ID of control that took the

set wmTaskData4
keystroke
set wmTaskData = window containing control
if control is a check box or radio button
set the ctlvalue for the control
endif
return (wInControl)
endif
endif
return (keyDownEvt or autoKeyEvt)
endif

5242 Apple 11GS Toolbox Reference,Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

TaskMasterKey first checks to see if menu keys are to be passed to the Menu Manager.
If so, TaskMasterKey calls MenuKey. If the user entered a menu keystroke, Menukey
handles it and TaskMasterKey returns control to the calling application,

If the user did not enter a menu key equivalent or if keystrokes are not to be passed to
the Menu Manager, TaskMasterKey looks for a control in the active window that wants
the keystroke. If a control takes the event, TaskMasterKey returns nullkvt to the
calling application. Otherwise, TaskMasterKey returns keyDownEvt, indicating that
the keystroke is for the application.

GDRPrivate $540FE

This is an internal Window Manager call; your program should never issue this call.

Chapter 52 Window Manager Update 5243

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Error messages

This section documents the error numbers and accompanying messages produced by the
ErrorWindow tool call. For each error number, the following table specifies the message
text displayed in the dialog box, the icon shown, and the button(s) available for the user
to press. Any required substitution strings are shown in the message text.

Error (Hex) Message Icon Button
$00 No error occurred. None OK
$01 Bad system call number. None OK
$04 Invalid parameter count. None OK
$07 GS/0S already active. None OK
$10 Device not found. None OK
$11 Invalid device number. None OK
$20 Bad request or demand. None OK
$21 Bad control or status code. . None OK
$22 Bad call parameter. None OK
$23 Character device not open. None OK
$24 Character device already open. None OK
$25 Interrupt table full. None OK
$26 Resources not available. None OK
$27 I1/0 error. None OK
$28 Device not connected. None OK
$29 Driver is busy and not available. None OK
$2B Device is write protected. None OK
$2C Invalid byte count. None OK
$2D Invalid block number. None OK
$2E Disk has been switched. None OK
$2F Device off-line/no media present. None OK
$40 Invalid pathname syntax. None OK
$43 Invalid reference number. None OK
$44 Subdirectory does not exist. None OK
$45 Volume not found. None OK
$46 File not found. None OK
$47 Duplicate pathname. None OK
$48 Volume full. None OK
$49 Volume directory full. None OK

5244 Apple TIGS Toolbox Reference,Volume 3

Apple IIGS Toolbox Reference, Volume 3

$4A
$4B
$4C
$4D
$4E
$4F
$50
$51
$52
$53
$54
$57
$58
$59

$5A
$5B
$5C
$5D
$5F
$60
$61
$62
$63

$64
$65
$66
$67
$68

$69
$70

Beta Draft 30 August 1989

Version error. None OK
Bad storage type. None OK
End of file encountered. None OK
Position out of range. None OK
Access not allowed. None OK
Buffer too small. None OK
File is already open. None OK
Directory error. None OK
Unknown volume type. None OK
Parameter out of range. None OK
Out of memory. None OK
Duplicate volume name. None OK
Not a block device. None OK
Specified level is outside legal range

None OK
Block number too large. None OK
Invalid pathnames for change_path. None OK
Not an executable file. None OK
Operating system not supported. None OK
Stack overflow. None OK
Data unavailable. None OK
End of directory has been reached. None OK
Invalid FST call class. None OK
File does not contain requested resource.

None OK
Specified FST is not present in system

None OK
FST does not handle this type of call

None OK
FST handled call, but result is weird

None OK
Internal error. None OK
Device list is full. None OK
Supervisor list is full. None OK
Cannot expand file, resource already exists.

None OK

Chapter 52 Window Manager Update

52-45

Apple IIGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

$71 Cannot add resource fork to this type of file.

None OK
$72 Unknown error: [errorstringl. ' None Cancel
$80 Error creating the new directory: [reason stringl.

Stop Cancel
$81 Error saving the file: [reasonstring. Stop Cancel
$82 Insufficient access privileges to open that folder.

Stop OK
$83 The selected folder cannot be opened: [reason string.

Stop. Cancel
$84 You cannot replace a folder with a file.

Stop Cancel
$85 That file already exists. Stop Cancel

_ Replace
$86 Insufficient memory to perform that operatiori.
About [number stringlk additional needed Stop Cancel
$87 Initialization failed: Disk write protected.

Stop Cancel
$88 The pathname is too long. Stop OK
$89 The disk is write protected. Caution Cancel
-$8A The disk is full. .Stop Cancel
$8B The disk directory is full. Stop Cancel
$8C The file is copy-protected and can't be copied.

Stop Cancel
$8D Memory is full. Stop OK
$8E There isn't enough memory remaining to complete this

operation. Please close some windows and try again.

Stop OK
$8F The item is locked and can't be renamed.

Stop Cancel
$90 An I/0 error has occurred while using the disk.

Stop Cancel
$91 This disk seems to be damaged Stop Cancel
$92 Not a ProDOS disk. Stop OK
$93 No on-line volumes can be found. Stop OK
$94 Insert the disk: [namestringl Swap Cancel

5246 Apple 11Gs Toolbox Reference,Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Appendix E Resource Types

This appendix documents the format and content of standard resources
used by the Apple IIGS toolbox. The resources are discussed in
alphabetical order by resource type name.

E1

Apple 1IGS Toolbax Reference, Volume 3 Beta Draft o 30 August 1989

rAlertString $8015

Figure E-1 defines the layout of resource type ralertString ($8015). Resources of this
type define the data for Alert Windows to be displayed by the Alertwindow Window
Manager tool call. For more complete information on Alert Window definitions, see
Chapter 52, “Window Manager Update,” earlier in this book.

s Figure E-1 Alert string, type rAlertString ($8015)

AlertWindow accepts a reference to a string that contains its message, and a reference
to an array of substitution strings. The substitution strings can be any of seven standard
strings (such as “OK”, “Continue”, and so on) or can be specified by the application and
stored in the buffer to which the substitution-string pointer refers.

$00| |
. alertString ¢ Array

alertString Defines the alert message to be displayed. Contents of this string must
comply with the rules for Alert Window definitions documented in
Chapter 52, “Window Manager Update,” earlier in this book.

E-2 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beia Draft . 30 August 1989

rControlList $8003

Figure E-2 defines the layout of resource type rControlList ($8003). The Control
Manager stores lists of resource IDs in resources of this type.

» Figure E-2 Control List, type rControlList ($8003)

$00 |
: ctllist - Array of longs

ctlList List of resource IDs for control template definitions. The last entry
must be set to NIL.

Appendix E ‘Resource Types E3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

rControlTemplate $8004

Resources of type rControlTemplate ($8004) define control templates, used with the
Control Manager NewCont rol2 tool call to create controls. You fill a type
rControlTemplate resource according to the needs of the particular control you want
to create. The system distinguishes between different control templates by examining the
procref field in the standard header portion that precedes each template,

E4 Apple IIGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Control template standard header

Each control template contains the standard header, which consists of seven fields.
Following that header, some templates have additional fields, which further define the
control to be created. The format and content of the standard template header is shown
in Figure E-3.

Custom control definition procedures establish their own item template layout. The only
restriction placed on these templates is that the standard header be present and well
formed. Custom data for the control procedure may follow the standard header.

» Figure E-3 Control template standard header

$00

- pCount —{ Word
$02 -

- D - Long
$06

: rect . Rectangle
$OE | -

- procRef = Long
$12 flag ~ Word
314 |— moreFlags -~ Word
$16 L -

= refCon -1 Long

pCount Count of parameters in the item template, not including the pCount

field. Minimum value is 6, maximum value varies depending upon the
type of control template.

Appendix E Resource Types E-5

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

ID Sets the ct 11D field of the control record for the new control. The
ct 11D field may be used by the application to provide a
straightforward mechanism for keeping track of controls. The control
ID is a value assigned by your application, which the control “carries
around” for your convenience. Your application can use the ID, which
has a known value, to identify a particular control.

rect Sets the ct 1Rect field of the control record for the new control.
Defines the boundary rectangle for the control.

procRef Sets the ct 1Proc field of the control record for the new control. This
field contains a reference to the control definition procedure for the
control. The value of this field is either a pointer to a control
definition procedure, or the ID of a standard routine. The standard

values are:

simpleButtonControl $80000000 Simple button
checkControl $82000000 Check box
iconButtonControl $07FF0001 Icon button
editLineControl $83000000 LineEdit
listControl $89000000 List
pictureControl $8D000000 Picture
popUpControl $87000000 Pop-up
radioControl $84000000 Radio control
scrollBarControl $86000000 Scroll bar
growControl $88000000 Size box
statTextControl $81000000 Static Text
editTextControl $85000000 TextEdit

E6 Apple IIGS Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

flag A word used to set both ct 1Hilite and ct1Flag in the control
record for the new control. Since this is a word, the bytes for
ctlHilite and ct1Flag are reversed. The high-order byte of £1ag
contains ct1Hilite, while the low-order byte contains ct1F1ag.
The bits in £1ag are mapped as follows:

Highlight bits 8-15 Indicates highlighting style:
0 Control active, no highlighted
parts

1-254 Part code of highlighted part
255 Control inactive

Invisible bit 7 Govemns visibility of control:
0 - Control visible
1 - Control invisible

Variable bits 06 Values and meaning depends upon
control type

Appendix E Resource Types E-7

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

moreFlags Used to set the ct1MoreFlags field of the control record for the
new control,

The high-order byte is used by the Control Manager to store its own
control information. The low-order byte is used by the control
definition procedure to define reference types.

The defined Control Manager flags are:

fCtlTarget $8000 If set to 1, this control is currently the target of any
typing or editing commands.

fCtlCanBeTarget $4000 If set to 1 then this control can be made the target
control.

fCtlWantEvents $2000 If set to 1 then this control can be called when events

are passed via the sendEventToCt1 Control
Manager call. Note that, if the fct1CanBeTarget
flag is set to 1, this control will receive events sent to
it regardless of setting of this flag.
fCtlProcRefNotPtr .
$1000 If set to 1, then Control Manager expects ct 1Proc
to contain the ID of a standard control procedure. If
set to 0, then ct1Proc contains a pointer to the
custom control procedure.
fCt1TellAboutSize
$0800 If set to 1, then this control needs to be notified
when the size of the owning window has changed.
This flag allows custom control procedures to resize
their associated control images in response to
changes in window size.
fCtlIsMultiPart $0400 If set to 1, then this is a multipart control. This flag
allows control definition procedures to manage multi-
part controls (necessary since the Control Manager
does not know about all the parts of a multi-part
contro)).

E-8 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

The low-order byte uses the following convention to describe
references to color tables and titles (note, though, that some control
templates do not follow this convention):

titleIsPtr $00 Title reference is by pointer
titleIsHandle $01 Title reference is by handle
titleIsResource $02 Title reference is by resource ID
colorTablelsPtr $00 Color table reference is by pointer

colorTableIsHandle $04 Color table reference is by handle
colorTableIsResource $08 Color table reference is by resource ID

refCon Used to set the ct 1RefCon field of the control record for the new
control. Reserved for application use.

Appendix E Resource Types E-9

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

Keystroke equivalent information
Many of these control templates allow you to specify keystroke equivalent information

for the associated controls. Figure E-4 shows the standard format for that keystroke
information.

» Figure E-4 Keystroke equivalent record layout

$00 keyl Byte
$01 key?2 Byte
§02 | kxeyModifiers -~ Word
$04 1 keyCareBits — Word
keyl This is the ASCII code for the upper or lower case of the key
equivalent.
key2 This is the ASCII code for the lower or upper case of the key

equivalent. Taken with key1, this field completely defines the values
against which key equivalents will be tested. If only a single key code
is valid, then set key1 and key?2 to the same value.

keyModifiers These are the modifiers that must be set to 1 in order for the
equivalence test to pass. The format of this flag word corresponds to
that defined for the event record in Chapter 7, “Event Manager,” in
Volume 1 of the Toolbox Reference. Note that only the modifiers in the
high-order byte are used here.

keyCareBits These are the modifiers that must match for the equivalence test to
pass. The format for this word corresponds to that for
keyModifiers. This word allows you to discriminate between
double-modified keystrokes. For example, if you want Control-7 to
be an equivalent, but not Option-Control-7, you would set the
controlKey bit in keyModifiers and both the optionKey and the
controlKey bits in keyCareBits to 1. If you want Return and Enter
to be treated the same, the keyPad bit should be set to 0.

E-10 Apple 1IGS Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Simple button control template

Figure E-5 shows the template that defines a simple button control.

s Figure E-5 Item template for simple button controls

$00 | pCount —~ Word-—Parameter count for template: 7, 8, or 9
$02 | -

— pioy — Long—Application-assigned control ID
$06

: rect - Rectangle—Boundary rectangle for control
$OE | -

- procRef —| Long—simpleButtonControl =§80000000
$12 | flag —| Word—Highlight and control flags for control
$41 norerlags -] Word—Additional control flags
$16 |]

— refCon — Long—Application-defined value
$1A | |

= titleRef —{ Long—Reference to title for button -
$1E | _

- *colorTableref —{ Long—Reference to color table for control (optional)
$22

: *keyEquivalent . Block, 6 bytes—Keystroke equivalent data (optional)
| |

Appendix E Resource Types E-11

Apple 1IGS Toolbox Reference, Volume 3

Defined bits for f1ag are

Reserved bits 8-15
ctlInvis bit 7
Reserved bits 2-6
Button type bits 0-1

Defined bits for moreFlags are

fCtlTarget bit 15
fCtlCanBeTarget bit 14
fCtlWantsEvents bit 13
fCtlProcNotPtr bit 12
fCtlTellAboutSize bit 11
Reserved bits 4-10
Color table reference bits 2-3

Title reference bits 0-~1

Beta Draft

Must be set to 0

1=invisible, O=visible

Must be set to 0

Describes button type:

0 = single-outlined round-cornered button

1 = bold-outlined round-cornered button

2 = single-outlined square-cornered button

3 = single-outlined square-cornered drop-shadowed
button

Must be set to 0

Must be set to 0

Set to 1 if button has keystroke equivalent

Must be set to 1

Must be set to 0

Must be set to 0

Defines type of reference in colorTableRef. See
Chapter 4, “Control Manager,” in Volume 1 of the
Toolbox Reference for the definition of the simple
button color table.

00 - color table reference is pointer

01 - color table reference is handle

10 - color table reference is resource ID

11 - invalid value :

Defines type of title reference in titleRef:

00 - title reference is pointer

01 - title reference is handle

10 - title reference is resource ID

11 - invalid value

keyEquivalent Keystroke equivalent information stored at keyEquivalent is
formatted as shown in Figure E—4.

E-12 Apple IIGS Toolbox Reference, Volume 3

30 August 1989

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft . 30 August 1989

Check box control template

Figure E-6 shows the template that defines a check box control.

s Figure E-6 Control template for check box controls

$00

- pCount — Word—Parameter count for template: 8, 9, or 10
$021 i) ~ Long—Application-assigned control ID
$06

: rect . Rectangle—Boundary rectangle for control
$OE | -

— procRef — Long— checkBoxControl =$82000000
$121 flag | Word—Highlight and control flags for contral
$14 = moreFlags —~ Word—Additiona! control ﬂags
$16 | -

= refCon — Long—Application-defined value
$1AL -

= titleRef — Long—Reference to title for box
$IEL iniciaivalwe - Word—Initial box setting: 0 for clear, 1 for checked
$20 -

|- +colorTableret —| Long—Reference to color table for control (optional)
$24

skeyEquivalent : Block, 6 bytes—Keystroke equivalent data (optional)

i |

Defined bits for £1ag are

Reserved bits 8-15 Must be set to 0
ctlInvis bit 7 1=invisible, O=visible
Reserved bits 0-6 Must be set to 0

Appendix E ‘Resource Types E-13

Appile 11GS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Defined bits for moreFlags are

fCtlTarget bit 15 Must be set to 0

fCtlCanBeTarget bit 14 Must be set to 0

fCtlwantsEvents bit 13 Set to 1 if check box has keystroke equivalent
fCtlProcNotPtr bit 12 Must be set to 1

fCt1lTellAboutSize bit 11 Must be set to 0

Reserved bits 4-10 Must be set to 0

Color table reference bits 2-3 Defines type of reference in colorTableRef (see
Chapter 4, “Control Manager,” in Volume 1 of the
Toolbox Reference for the definition of the check box
color table)
00 - color table reference is pointer
01 - color table reference is handle
10 - color table reference is resource ID
11 - invalid value
Title reference bits 0-1 Defines type of title reference in titleRef:
00 - title reference is pointer
01 - title reference is handle -
10 - title reference is resource ID .
11 - invalid value

keyEquivalent Keystroke equivalent information stored at keyEquivalent is
formatted as shown in Figure E-4.

E-14 Apple 1IGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft - 30 August 1989

Icon button control template

Figure E-7 shows the template that defines an icon button control. For more information
about icon button controls, see “Icon button control” in
Chapter 28, “Control Manager Update,” earlier in this book.

s Figure E-7 Control template for icon button controls

$00 | pCount — Word—Parameter count for template: 7, 8, 9, 10, or 11
$0z D — Long—Application-assigned control ID
$06

: rect - Rectangle—Boundary rectangle for control
$OR [_

— procRef —| Long—iconButtonControl =$07FF0()01
Sz flag — Word—Highlight and control flags for control
$14 | moreflags — Word—Additional control flags
$16 | _

= refCon — Long—Application-defined vatue
$1A[_

— iconRef — Long—Reference to icon for control
$IE | n

- *titleRef —{ Long—Reference to title for control (optional)
$21 -

—~ »colorTableref —{ Long—Reference to color table for control (optional)
$26 *displayMode -4 Word-—Bit flag controlling icon appearance (optional)
$28

*keyEquivalent . Block, 6 bytes—Key equivalent information (optional)

i |

Appendix E Resource Types E-15

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Defined bits for f1ag are

ctlHilite bits 8-15 Sets the ct1Hilite field of the control record
ctlInvis bit 7 1=invisible, O=visible

Reserved bits 36 Must be set to 0

showBorder bit 2 1=No border, 0=Show border

buttonType bits -1 Defines button type:

00 - single-outlined round-cornered button

01 - bold-outlined round-cornered button

10 - single-outlined square-cornered button

11 - single-outlined square-comered and drop-
shadowed button

Defined bits for moreFlags are

fCtlTarget bit 15 Must be set to 0
fCtlCanBeTarget bit 14 Must be set to 0
fCtlWantsEvents bit 13 Must be set to 0
fCtlProcNotPtr bit 12 Must be set to 1
fCtlTellAboutSize
‘ bit 11 Must be set to 0
Reserved bits 6-10 Must be set to 0
Icon reference bits 4~5 Defines type of icon reference in iconRef:

00 - icon reference is pointer
01 - icon reference is handle
10 - icon reference is resource ID
11 - invalid value
Color table reference bits 2-3 Defines type of reference in colorTableRef; the
color table for an icon button is the same as that for a
simple button (see Chapter 4, “Control Manager,” in
Volume 1 of the Toolbox Reference for the definition
of the simple button color table)
00 - color table reference is pointer
01 - color table reference is handle
10 - color table reference is resource ID
11 - invalid value
Title reference bits -1 Defines type of title reference in titleRef:
00 - title reference is pointer
01 - title reference is handle
10 - title reference is resource ID
11 - invalid value

E16 Apple 1IGS Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

titleRef Reference to the title string, which must be a Pascal string. If you are
not using a title but are specifying other optional fields, set
moreFlags bits 0 and 1 to 0, and set this field to zero.

displayMode Passed directly to the brawIcon routine, and defines the display
mode for the icon. The field is defined as follows (for more
information on icons, see Chapter 17, “QuickDraw II Auxiliary,” in
Volume 2 of the Toolbox Reference):

Background Color bits 12-15 Defines the background color to apply to black part
of black-and-white icons.

Foreground Color bits 8-11 Defines the foreground color to apply to white part
of black-and-white icons.

Reserved bits 37 Must be set to 0

offLine bit 2 1=AND light-gray pattern to image being copied
0=Don't AND the image

openIcon bit 1 1=Copy light-gray pattern instead of image
0=Don't copy light-gray pattern

selectedIcon bit 0 1=Invert image before copying

0=Don’t invert image

Color values (both foreground and background) are indexes into the
current color table. See Chapter 16, “QuickDraw I1,” in Volume 2 of the
Toolbox Reference for details about the format and content of these
color tables.

keyEquivalent Keystroke equivalent information stored at keyEquivalent is
formatted as shown in Figure E-4.

Appendix E Resource Types E-17

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft ‘ 30 August 1989

LineEdit control template
Figure E-8 shows the template that defines a LineEdit control. For more information

about LineEdit controls, see “LineEdit control” in Chapter 28, “Control Manager Update,”
earlier in this book.

m Figure E-8 Control template for LineEdit controls

$00 | pCount —| Word—Parameter count for template: 8
$02 [:

= D —{ Long—Application-assigned control ID
$06

: rect - Rectangle—Boundary rectangle for control
$E | |

— procRef | Long—editLineControl =$83000000
$12 | flag | Word—Highlight and control flags for control
14 | moreFlags —| Word—Additional control flags
$16 | _

- refcon —~ Long—Application-defined value
AL axsize — Word—Maximum length of input line (in bytes)
$1C | __

- defaultRef —{ Long—Reference to default text

Defined bits for £1ag are

Reserved bits 815 Must be set to 0
ctlinvis bit 7 1=invisible, 0=visible
Reserved bits -6 Must be setto 0

E-18 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Defined bits for moreFlags are

fCtlTarget bit 15 Must be set to 0
fCtlCanBeTarget bit 14 Must be set to 1
fCtlWantsEvents bit 13 Must be set to 1
fCtlProcNotPtr bit 12 Must be set to 1
fCtlTellAboutSize
bit 11 Must be set to 0
Reserved bits 2-10 Must be set to 0
Text reference bits -1 Defines type of text reference in defaultRef

00 - text reference is pointer

01 - text reference is handle

10 - text reference is resource ID
11 - invalid value

maxSize Specifies the maximum number of characters allowed in the LineEdit
field. Valid values lie in the range from 1 to 255.

The high-order bit indicates whether the LineEdit field is a password
field. Password fields protect user input by echoing asterisks, rather
than the actual user input. If this bit is set to 1, then the LineEdit field
is a password field.

Note that LineEdit controls do not support color tables.

Appendix E Resource Types E-19

Apple 11IGS Toolbox Reference, Volume 3 Beta Draft

List control template

30 August 1989

Figure E-9 shows the template that defines a list control. For more information about list

controls, see “List control” in Chapter 28, “Control Manager Update,” earlier in this book.

» Figure E-9
500 . pCount -
$02 [—
e D -
$06
. rect
$OE | —
— procRef —
$12 flag —
SM - moreFlags —
$16 | —
— refCon =
$1IA] 1istsize —
le o listView -
le - listType -
520 . listStart -
$22 —
b— listDraw -
526 - listMemHeight —
3% e listMemSize -
$2A -
— listRef -
$2E| —
- *colorTableRef ——
E-20

Control template for list controls

Word--Parameter count for template: 14 or 15

Long—Application-assigned control ID

- Rectangle—Boundary rectangle for control

($0E) Long—1istControl =$89000000

Word—Highlight and control flags for control

Word-~Additional control flags
Long—Application-defined value

Word--Number of members in list
Word-~Number of members visible in window
Word—Type of list entries, selection options, etc.

Word—First visible list member
Long—Pointer to member drawing routine

Word—Height of each list item (in pixels)

Word—Size of list entry (in bytes)

Long—Reference to list of member records

Long—Reference to color table for control (optional)

Apple 1IGS Toolbox Reference, Volume 3

Apple IIGS Toolbax Reference, Volume 3 Beta Draft - 30 August 1989

Defined bits for £1ag are

Reserved bits 8-15 Must be set to 0
ctlinvis bit 7 1=invisible, O=visible
Reserved bits 0-6 Must be set to 0

Defined bits for moreF1ags are

fCtlTarget bit 15 Must be set to 0
fCtlCanBeTarget bit 14 Must be set to 0
fCtlWantsEvents bit 13 Must be set to 0
£Ct1lProcNotPtr bit 12 Must be set to 1
fCtlTellAboutSize

bit 11 Must be set to 0
fCtlIsMultiPart bit 10 Must be set to 1
Reserved bits 49 Must be setto 0

Color table reference bits 2-3 Defines type of reference in colorTableref (the
color table for a List control is described in
Chapter 11, “List Manager,” in Volume 1 of the
Toolbox Reference)
00 - color table reference is pointer
01 - color table reference is handle
10 - color table reference is resource ID
11 - invalid value

List reference bits -1 Defines type of reference in 1istref (the format
for a list member record is described in
Chapter 11, “List Manager,” in Volume 1 of the
Toolbox Reference) '
00 - list reference is pointer
01 - list reference is handle
10 - list reference is resource ID
11 - invalid value

Appendix E Resource Types E-21

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

listType Valid values for 1i st Type are as follows:

Reserved bits3-15 Must be set to 0.

fListScrollBar bit 2 Allows you to control where the scroll bar for the list is
drawn:

1 - Scroll bar drawn on inside of boundary rectangle.

The List Manager calculates space needed, adjusts

dimensions of boundary rectangle, and resets this

flag.

0 - Scroll bar drawn on outside of boundary rectangle.
fListSelect bit 1 Controls type of selection options available to the

user:

1 - Only single selection allowed

0 - Arbitrary and range selection allowed
fListString bit 0 Defines the type of strings used to define list items:

1 - C-strings ($00-terminated)

0 - Pascal strings

For details on the remaining custom fields in this template, see the discussion of “List
Controls and List Records” in Chapter 11, “List Manager,” of Volume 1 of the Toolbox
Reference.

E-22 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Picture control template
Figure E-10 shows the template that defines a picture control. For more information about

picture controls, see “Picture control” in Chapter 28, “Control Manager Update,” earlier in
this book.

s Figure E-10 Control template for picture controls

$00 | pCount — Word—Parameter count for templaie: 7
s02[-

= i) —{ Long—Application-assigned control ID
$06

: rect . Rectangle—Boundary rectangle for control
$OE _

e procRef — Long—pictureControl =$8D000000
s12 flag —| Word—Highlight and contraol flags for control
§14 - moreFlags —~ Word—Additional control ﬂags
$16 | _

— refCon ~| Long—Application-defined value
$1A| |

- pictureRef —| Long—Reference to picture for control

Defined bits for £1ag are

ctlHilite bits 8-15 Specifies whether the control wants to receive mouse
selection events; the values for ct1Hilite are as
follows:
0 Control is active
255 Control is inactive

ctlInvis bit7 1=invisible, O=visible

Reserved bits 0-6 Must be set to 0

Appendix E Resource Types E-23

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft o 30 August 1989

Defined bits for moreFlags are

fCtlTarget bit 15 Must be set to 0

fCtlCanBeTarget Dbit 14 Must be set to 0

fCtlWantsEvents bit 13 Must be set to 0

fCtlProcNotPtr bit 12 Must be set to 1

fCtlTellAboutSize bit 11 Must be set to 0

Reserved bits 2-10 Must be set to 0

Picture reference bits 0~-1 Define type of picture reference in pictureref:

00 - invalid value

01 - reference is handle

10 - reference is resource ID
11 - invalid value

E24 Apple IIGS Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Pop-up control template

Figure E-11 shows the template that defines a pop-up control. For more information
about pop-up controls, see “Pop-up control” in Chapter 28, “Control Manager Update,”
earlier in this book.

s Figure E-11 Control template for pop-up controls

$00 1 pCount — Word—Parameter count for template: 9 or 10
$02 | _

— 1D ~{ Long—Application-assigned control ID
$06

: rect . Rectangle—Boundary rectangle for control
$OE [-

— procRef - Long—popUpCont rol=$87000000
2 flag - Word—Highlight and control flags for controt
$14 - moreFlags — Word—Additional control ﬂags
$16 | -

= refCon — Long—Application-defined value
$IAL ticiewtatn —| Word—Width in pixels of title string area
$1C| - :

= menuRef ~| Long—Reference to menu definition
S0 inicsaivalue - Word—Item ID of initial item
2 -

- rcolorTableref —| Long—Reference to color table for control (optional)

Appendix E Resource Types E-25

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Defined bits for £1ag are

ctlHilite bits 8-15 Specifies whether the control wants to receive mouse
selection events; the values for ct 1Hilite are as
follows:
0 Control is active
255 Control is inactive

ctlInvis bit 7 1=invisible, O=visible :

fType2PopUp bit 6 Tells the Control Manager whether to create a pop-up
menu with white space for scrolling (see
Chapter 37, “Menu Manager Update,” for details on
Type 2 pop-up menus):
1 - Draw pop-up with white space (Type 2)
0 - Draw normal pop-up

fDontHiliteTitle bit 5 Controls highlighting of the control title:
1- Do not highlight title when control is popped up
0 - Highlight title

fDontDrawTitle bit 4 Allows you to prevent the title from being drawn
(note that you must supply 2 title in the menu
definition, whether or not it will be displayed); if
titlewidth is defined and this bit is set to 1, then
the entire menu is offset to the right by titlewidth
pixels:
1- Do not draw the title
0 - Draw the title

fDontDrawResult bit 3 Allows you to control whether the selection is drawn
in the pop-up rectangle:
1- Do not draw the result in the result area after a
selection
0 - Draw the result

fInWindowOnly bit 2 Controls the extent to which the pop-up menu can
grow; this is particularly relevant to Type 2 pop-ups
(see Chapter 37, “Menu Manager Update,” for details
on Type 2 pop-up menus):
1 - Keep the pop-up in the current window
0 - Allow the pop-up to grow to screen size

fRightJustifyTitle

E-26 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3

\

bit 1

fRightJustifyResult

bit 0

Defined bits for moreFlags are

fCtlTarget bit 15
fCtlCanBeTarget bit 14
fCtlWantsEvents bit 13
fCtlProcNotPtr bit 12
fCt1lTellAboutSize

bit 11
Reserved bits 5~10
Color table reference bits 34
fMenuDefIsText bit 2

Beta Draft - 30 August 1989

Controls title justification:

1 - Right justify the title; note that if the title is right
justified, then the control rectangle is adjusted to
eliminate unneeded pixels, the value for
titlewidth is also adjusted

0 - Left justify the title

Controls result justification:

1 - Right justify the selection

0 - Left justify the selection titlewidth pixels from
the left of the pop-up rectangle.

Must be set to 0

Must be set to 0

Must be set to 1 if the pop-up has any keystroke
equivalents defined

Must be set to 1

Must be set to 0

Must be set to 0

Defines type of reference in colorTableref (the
color table for a menu is described in

Chapter 13, “Menu Manager,” in Volume 1 of the
Toolbox Reference)

00 - color table reference is pointer

01 - color table reference is handle

10 - color table reference is resource ID

11 - invalid value

Defines type of data referred to by menuRref:
1-menuRef is a pointer to a text stream in NewMenu
format (see Chapter 13, “Menu Manager,” in Volume 1
of the Toolbox Reference for details)

0 - menuRef is a reference to a Menu Template
(again, see Chapter 13, “Menu Manager,” in Volume 1
of the Toolbox Reference for details on format and
content of 2 Menu Template)

Appendix E 'Resource Types

E-27

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Menu reference bits 0-1 Defines type of menu reference in menuref (if
fMenuDefIsText is set to 1, then these bits are
ignored): _

00 - menu reference is pointer

01 - menu reference is handle

10 - menu reference is resource ID
11 - invalid value

rect Defines the boundary rectangle for the pop-up and its title, before the
menu has been “popped” by the user. The Menu Manager will calculate
the lower, right coordinates of the rectangle for you, if you specify
those coordinates as (0,0).

initialvalue The initial value to be displayed for the menu. The initial value is the
default value for the menu, and is displayed in the pop-up rectangle of
“unpopped” menus. You specify an item by its ID, that is, its relative
position within the array of items for the menu (see
Chapter 37, “Menu Manager Update,” for information on the layout
and content of the pop-up menu template). If you pass an invalid
item ID then no item is displayed in the pop-up rectangle.

titlewidth Provides you with additional control over placement of the menu on
the screen. The titlewidth field defines an offset from the left
edge of the control (boundary) rectangle to the left edge of the pop-
up rectangle. If you are creating a series of pop-up menus and you
want them to be vertically aligned, you can do this by giving all menus
the same x1 coordinate and titlewidth value. You may use
titlewidth for this even if you are not going to display the title
(fpontDrawritle flagissetto 1in £1ag). If you set titlewidth
to 0, then the Menu Manager determines its value based upon the
length of the menu title, and the pop-up rectangle immediately follows
the title string. If the actual width of your title exceeds the value of
titlewidth, results are unpredictable.

menuRef Reference to menu definition (see Chapter 13, “Menu Manager,” in
Volume 1 of the Toolbox Reference and
Chapter 37, “Menu Manager Update,” in this book for details on menu
templates). The type of reference contained in menuRref is defined
by the menu reference bits in moreFlags. ‘

E-28 Apple IIGS Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Radio button control template

Figure E-12 shows the template that defines a radio button control:

» Figure E-12 Control template for radio button controls

$00 | pCount ~ Word—Parameter count for template: 8, 9, or 10
$0z | -

— ™ ~1 Long—Application-assigned control ID
$06

: rect - Rectangle—Boundary rectangle for control
$OE | .

- procRef —| Long— radioButtonControl =$84000000
$121 flag — Word—Highlight and contro! flags for control
$141 moreFlags — Word—Additional control flags
$16 [-

— refCon —| Long—Application-defined value
$1A| -

- titleRef —~ Long—Reference to title for button
SIEL ihiciaivalue o Word—Initial setting: 0 for clear, 1 for set
$20 1 -

- *colorTableRer — Long—Reference to color table for control (optional)
$24

*keyEquivalent . Block, 6 bytes—Keystroke equivalent data (optional)

Defined bits for f1ag are

Reserved bits 815 Must be set to 0
ctlInvis bit 7 1=invisible, O=visible

Appendix E Resource Types E-29

Apple 1IGS Toolbox Reference, Volume 3

Family number bits 0~6

Beta Draft ' 30 August 1989

Family numbers define associated groups of radio
buttons; radio buttons in the same family are logically
linked, that is, setting one radio button in a family
clears all other buttons in the same family

Defined bits for moreFlags are as follows:

fCtlTarget bit 15
fCtlCanBeTarget bit 14
fCtlWantsEvents bit 13
fCtlProcNotPtr bit 12

fCtlTellRboutSize
bit 11

Reserved bits 4-10
Color table reference bits 2-3

Title reference bits 0-1

Must be set to 0
Must be set to 0
Set to 1 if button has keystroke equivalent
Must be set to 1

Must be set to 0

Must be set to 0

Defines type of reference in colorTableRef (see
Chapter 4, “Control Manager,” in Volume 1 of the
Toolbox Reference for the definition of the radio
button color table)

00 - color table reference is pointer

01 - color table reference is handle

10 - color table reference is resource ID

11 - invalid value

Defines type of title reference in titleRef:

00 - title reference is pointer

01 - title reference is handle

10 - title reference is resource ID

11 - invalid value

keyEquivalent Keystroke equivalent information stored at keyEquivalent is
formatted as shown in Figure E-4.

E-30 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Scroll bar control template

Figure E-13 shows the template that defines a scroll bar control:

s Figure E-13 Control template for scroll bar controls

$00

- pCount —| Word—Parameter count for template: 9 or 10
$021 __ 4

= pis — Long—Application-assigned control ID
$06

: rect - Rectangle—Boundary rectangle for control
$OE _

- procRef — Long—scrollControl =§86000000
$121 flag — Word—Highlight and control flags for control
§14 - moreFlags —| Word—Additional control flags
$16 | -

— refCon ~{ Long—Application-defined value
$1AL maxsize — Word—Initial size of displayed item
$icL viewsize ~| Word—Amount of item initially visible
$IEL inietaivalue | Word—Initial sefting
$20 -

- +colorTableret —f Long—Reference to color table for control (optional)

Appendix E Resource Types E-31

Apple IIGS Toolbox Reference, Volume 3

Defined bits for £1aqg are

Reserved bits 8-15
ctlInvis bit 7
Reserved bits 5-6
horScroll bit 4
rightFlag bit 3
leftFlag ' bit 2
downFlag bit 1
upFlag bit 0

Beta Draft ' 30 August 1989

Must be set to 0

1=invisible, O=visible

Must be set to 0

1=horizontal scroll bar, O=vertical scroll bar
1=bar has right arrow, O=bar has no right arrow
1=bar has left arrow, O=bar has no left arrow
1=bar has down arrow, O=bar has no down arrow
1=bar has up arrow, O=bar has no up arrow

Note that extraneous flag bits are ignored, based upon state of horscro11 flag. For
example, for vertical scroll bars, rightFlagand leftFlag are ignored.

Defined bits for moreFlags are

fCtlTarget bit 15
fCtlCanBeTarget bit 14
fCtlWantsEvents bit 13
fCtlProcNotPtr bit 12
fCtlTellAboutSize

bit 11
Reserved bits 4-10
Color table reference bits 2-3

Reserved bits (-1

Must be set to 0
Must be set to 0
Must be set to 0
Must be set to 1

Must be set to 0

Must be set to 0

Defines type of reference in colorTableRef (see
Chapter 4, “Control Manager,” in Volume 1 of the
Toolbox Reference and “Clarifications” in

Chapter 28, “Control Manager Update,” earlier in this
book for the definition of the scroll bar color table)
00 - color table reference is pointer

01 - color table reference is handle

10 - color table reference is resource ID

11 - invalid value

Must be set to 0

E-32 Apple 11Gs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Size box control template

Figure E-14 shows the template that defines a size box control:

» Figure E-14 Control template for size box controls

$00

= pCount ~| Word—Parameter count for template: 6 or 7
$02 [B
= D -~ Long—Application-assigned control ID
$06 :
: rect - Rectangle—Boundary rectangle for control
$OE []
- procRef ~ Long— growCont rol=$88000000
$12 | flag —~| Word—Highlight and control flags for control
§14 = moreFlags ~ Word-—Additional control ﬂags
$16 | N
= refCon —{ Long—Application-defined value
$20 |]
— *colorTableret ~{ Long-—Reference to color table for control (optional)

Defined bits for £1ag are

Reserved bits 8-15 Must be set to 0

ctlInvis bit 7 1=invisible, O=visible

Reserved bits 1-6 Must be set to 0

fCallWindowMgr bit 0 1=call Growwindow and sizeWindow to track this
control
0O=just highlight control

Appendix E Resource Types E-33

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Defined bits for morerlags are

fCtlTarget bit 15 Must be set to 0
fCtlCanBeTarget bit 14 Must be set to 0
fCtlWantsEvents bit 13 Must be set to 0
fCtlProcNotPtr bit 12 Must be set to 1
fCt1lTellAboutSize

bit 11 Must be set to 0
Reserved bits 4~10 Must be set to 0

Color table reference bits 2-3 Defines type of reference in colorTableref (see
“Error Corrections” in
Chapter 28, “Control Manager Update,” earlier in this
book for the definition of the size box color table)
00 - color table reference is pointer
01 - color table reference is handle
10 - color table reference is resource ID
11 - invalid value

Reserved bits 0-1 Mustbe setto 0

E-34 Apple 1IGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Static text control template
Figure E-15 shows the template that defines a static text control. For more information

about static text controls, see “Static text control” in
Chapter 28, “Control Manager Update,” earlier in this book.

s Figure E-15 Control template for static text controls

$00 [pCount —| Word—Parameter count for template: 7, 8, or 9
$02 | -

— b ~ Long—Application-assigned control ID
$06

: rect - Rectangle—Boundary rectangle for control
$OE _

— procRef — Long— statTextControl =$81000000
1z flag - Word—Highlight and control flags for control
$14 moreFlags — Word—Additional control flags
$16 [-

= refCon — Long—Application-defined value
$1AL ‘ N

- textRef — Long—Reference to text for control
le - *textSize —~ Word—Text size field (optional)

20 *just — Word—Initial justification for text (optional)

Appendix E Resource Types E-35

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Defined bits for £1ag are

Reserved bits 815 Must be set to 0

ctlInvis bit 7 1=invisible, O=visible

Reserved bits 2-6 Must be set to 0

fSubstituteText bit 1 0=no text substitution to perform
1=there is text substitution to perform

fSubTextType bit 0 0=C strings

1=Pascal strings

Defined bits for moreFlags are

fCtlTarget bit 15 Must be set to 0
fCtlCanBeTarget Dbit 14 Must be set to 0
fCtlWantsEvents bit 13 Must be set to 0
fCtlProcNotPtr bit 12 Must be set to 1
fCtlTellAboutSize
bit 11 Must be set to 0
Reserved bits 210 Must be set to 0
Text Reference bits 0-1 Defines type of text reference in textRef:

00 - text reference is pointer

01 - text reference is handle

10 - text reference is resource ID
11 - invalid value

textSize The size of the referenced text in characters, but only if the text
reference in textRef is a pointer. If the text reference is either a
handle or a resource ID, then the Control Manager can extract the
length from the handle.

just The justification word is passed on to LETextBox2 (see
Chapter 10, “LineEdit Tool Set,” in Volume 1 of the Toolbax Reference
for details on the LETextBox2 tool call), and is used to set the initial
justification for the text being drawn. Valid values for just are

leftJgustify 0 Text is left justified in the display window

centerJustify 1 Text is centered in the display window

rightJustify -1 Textis right justified in the display window

fullJustify 2 Textis fully justified (both left and right) in
the display window

Static text controls do not support color tables. In order to display text of different
color, you must embed the appropriate commands into the text string you are displaying.
See the discussion of LETextBox2 in Chapter 10, “LineEdit Tool Set,” in Volume 1 of the
Toolbox Reference for details on command format and syntax.

E-36 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

TextEdit control template

Figure E-16 shows the template that defines a TextEdit control. For more information
about TextEdit controls, see “TextEdit control” in Chapter 28, “Control Manager Update,”
earlier in this book.

= Figure E-16 Control template for TextEdit controls

$00 1 pCount —| Word—Parameter count for template: 7 to 23
$02 | _ _

— bio — Long—Application-assigned control ID
$06

: rect - Rectangle—Boundary rectangle for control
$OB[|

— procRef —| Long—editTextControl=$85000000
12| flag ~| Word—Highlight and control flags for control
$14 = moreFlags - Word—Additional control ﬂags
$16 _

= refCon ~{ Long—Application-defined value
$1A[|

[textFlags | Long—Specific TextEdit control flags (see below)
$1E

: *indentRect : Rectangle—Defines text indentation from control rect (optional)
$26 | -

= *vertBar — Long—Handle to vertical scroll bar for control (optional)
$4] .ertmmount - Word—Vertical scroll amount, in pixels (optional)
$2C1 _

— *horzBar ~ Long—Reserved; must be set to NILL (optional)
0L snorzamount o Word—Reserved; must be set to 0 (optional)

continued

Appendix E Resource Types E-37

Apple 11GS Toolbox Reference, Volume 3 Beta Draft

$32

§36
$38

$3C

$40

$44

-§48
$4A

$4C|_

$50 |

§52

Defined bits for £1ag are

bits 815 Must be set to 0
bit 7
bits 0-6 Must be set to 0

Reserved
ctlInvis
Reserved

E-38

continued

*styleRef

*textDescriptor

*textRef

*textLength

*maxChars

*maxLines

*maxCharsPerLines

*maxHeight

*colorRef

*drawMode

T

*filterProcPtr

Long—Reference to initial style information for text (optional)
Word—Defines format of initial text and textRe £ (optional)

Long—Reference to initial text for edit window (optional)

Long—TLength of initial text (optional)

Long—Maximum number of characters aliowed (optional)

Long—Reserved; must be set to 0 (optional)

Word—Reserved; must be set to 0 (optional)

Word—Reserved; must be set to 0 (optional)

Long—Reference to TextEdit color table (optional)
Word—QuickDraw II text mode for edit window (optional)

Long—Pointer to filter routine for this control (optional)

1=invisible, O=visible

Apple 11GS Toolbox Reference, Volume 3

30 August 1989

Apple IIGS Toolbox Reference, Volume 3

Defined bits for moreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWwantsEvents
fCtlProcNotPtr
fTellAboutSize

fCtlIsMultiPart
Reserved
Color table reference

Style reference

bit 15
bit 14
bit 13
bit 12
bit 11

bit 10
bits 4-9
bits 2-3

bits 0-1

Beta Draft 30 August 1989

Must be set to 0.

Must be set to 1

Must be set to 1

Must be set to 1

If set to 1, a size box will be created in the lower-right
corner of the window. Whenever the control window
is resized, the edit text will be resized and redrawn.
Must be set to 1 |
Must be set to 0

Defines type of reference in colorref; the color
table for a TextEdit control (TEColorTable) is
described in Chapter 49, “TextEdit,” in this book:
00 - color table reference is pointer

01 - color table reference is handle

10 - color table reference is resource ID

11 - invalid value

Defines type of style reference in styleref; the
format for a TextEdit style descriptor is described in
Chapter 49, “TextEdit,” in this book:

00 - style reference is pointer

01 - style reference is handle

10 - style reference is resource ID

11 - invalid value

A Important Do not set £TellaboutSize to 1 unless the control also has a
verttical scroll bar. a

Valid values for textFlags are

fNotControl
fSingleFormat
fSingleStyle

fNoWordWrap

bit 31
bit 30
bit 29

bit 28

Must be set to 0

Must be set to 1

Allows you to restrict the style options available to
the user:

1 - Allow only one style in the text

0 - Do not restrict the number of styles in the text
Allows you to control TextEdit word wrap behavior:
1 - Do not word wrap the text; only break lines on CR
($0D) characters

0 - Perform word wrap to fit the ruler

Appendix E Resource Types

E-39

Apple LGS Toolbox Reference, Volume 3 Beia Draft ' 30 August 1989

fNoScroll bit 27 Controls user access to scrolling:
1 - Do not allow either manual or auto-scrolling
0 - Scrolling permitted
fReadOnly bit 26 Restricts the text in the window to read-only
operations (copying from the window will still be
allowed):
1 - No editing allowed
0 - Editing permitted
fSmartCutPaste bit 25 Controls TextEdit support for smart cut and paste
(see Chapter 49, “TextEdit,” for details on smart cut
and paste support):
1 - Use smart cut and paste
0 - Do not use smart cut and paste
fTabSwitch bit 24 Defines behavior of the Tab key (see
Chapter 49, “TextEdit,” for details):
1 - Tab to next control in the window
0 - Tab inserted in TextEdit document
fDrawBounds bit 23 Tells TextEdit whether to draw a box around the edit
window, just inside rect; the pen for this box is two
pixels wide and one pixel high
1- Draw rectangle
0- Do not draw rectangle
fColorHilight bit 22 Must be set to 0.
fGrowRuler bit 21 Tells TextEdit whether to resize the ruler in response
to the user resizing the edit window; if set to 1,
TextEdit will automatically adjust the right margin
value for the ruler:
1 - Resize the ruler
0 - Do not resize the ruler
fDisableSelection
bit 20 Controls whether user can select text:
1 - User cannot select text
0 - User can select text
fDrawInactiveSelection
bit 19 Controls how inactive selected text is displayed:
1 - TextEdit draws a box around inactive selections
0 - TextEdit does not display inactive selections
Reserved bits 0-18 Must be set to 0

E-40 Apple IIGS Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

indentRect

vertBar

vertAmount

horzBar
horzAmount

styleRef

Each coordinate of this rectangle specifies the amount of white space
to leave between the boundary rectangle for the control and the text
itself, in pixels. Default values are (2,6,2,4) in 640 mode and (2,4,2,2)
in 320 mode. Each indentation coordinate may be specified
individually. In order to assert the default for any coordinate, specify
its value as $FFFF.

Handle of the vertical scroll bar to use for the TextEdit window. If you
do not want a scroll bar at all, then set this field to NIL. If you want
TextEdit to create a scroll bar for you, just inside the right edge of the
boundary rectangle for the control, then set this field to $FFFFFFFF,

Specifies the number of pixels to scroll whenever the user presses the
up or down arrow on the vertical scroll bar. In order to use the default
value (9 pixels), set this field to $0000. '

Must be set to NIL.
Must be set to 0.

Reference to initial style information for the text. See the description
of the TEFormat record in Chapter 49, “TextEdit,” for information
about the format and content of a style descriptor. Bits 1 and 0 of
moreFlags define the type of reference (pointer, handle, resource
ID). To use the default style and ruler information, set this field to
NULL.

textDescriptor

textRef

textLength

Input text descriptor that defines the reference type for the initial
text (which is in textRe£) and the format of that text. See
Chapter 49, “TextEdit,” for detailed information on text and
reference formats.

Reference to initial text for the edit window. If you are not supplying
any initial text, then set this field to NULL.

If textRef is a pointer to the initial text, then this field must contain
the length of the initial text. For other reference types, TextEdit
extracts the length from the reference itself.

& Note: You must specify or omit the textDescriptor, textRef, and text Length
fields as a group.

Appendix E Resource Types E-41

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft . 30 August 1989

maxChars Maximum number of characters allowed in the text. If you do not want
to define any limit to the number of characters, then set this field to
NULL. '

maxLines Must be set to 0.

maxCharsPerLines
Must be set to NULL.

maxHeight Must be set to 0.

colorRef Reference to the color table for the text. This is a Text Edit color table
(see Chapter 49, “TextEdit,” for format and content of
TEColorTable). Bits 2 and 3 of moreFlags define the type of
reference stored here.

drawMode This is the text mode used by QuickDraw II for drawing text. See
Chapter 16, “QuickDraw I1,” in Volume 2 of the Toolbox Reference for
details on valid text modes.

filterProcPtr Pointer to a filter routine for the control. See Chapter 49, “TextEdit,”

for details on TextEdit generic filter routines. If you do not want to
use a filter routine for the control, set this field to NIL.

E42 Apple 1IGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft - 30 August 1989

rClInputString $8005

Figure E-17 defines the layout of resource type rC1Inputstring ($8005). Resources of
this type contain GS/OS Class 1 input strings (length word followed by data).

» Figure E-17 GS/OS class1 input string, type rC1InputString ($8005)

300 - length — Word

302; stringCharacters . length Bytes

length Indicates the number of bytes stored at st ringCharacters. This is
an unsigned integer; valid values lie in the range from 1 to 65535.

stringCharacters
Array of 1ength characters.

Appendix E Resource Types E-43

Apple LGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

rClOutputString $8023

Figure E-18 defines the layout of resource type rc1outputString ($8023). Resources
of this type contain GS/OS class 1 output strings (buffer size word and string length word
followed by data).

» Figure E-18 GS/OS classl output string, type rC1loutputString ($8023)

$00 buf ferSize - Word

302 — stringlength -~ Word

$04

stringCharacters . String LengthBytes

bufferSize Indicates the number of bytes in the entire structure, including
bufferSize.

stringLength Indicates the number of bytes stored at st ringCharacters. This is
an unsigned integer; valid values lie in the range from 1 to 65535. If the
returned string will not fit in the buffer, this field indicates the length
of the string the system wants to return. Your program should add four
to that value (to account for buf fersize and stringLength,
resize the buffer, and reissue the call).

stringCharacters
Amay of st ringLength characters,

E44 Apple IIGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft . 30 August 1989

rCString $801D

Figure E-19 defines the layout of resource type rcstring ($801D). Resources of this
type contain C strings (null-terminated character array).

= Figure E-19 C string, type rCString ($801D)

$00] |

stringCharacters . Bytes

i 1

stringCharacters
Array of characters; last character must be a null ($00). The string may

contain up to 65,535 characters, including the null terminator.

Appendix E Resource Types E-45

Apple IIGS Toolbox Reference, Volume 3

Beta Draft

30 August 1989

rIcon $8001

IFigure E-20 defines the layout of resource type ricon ($8001).

= Figure E-20 Icon, type rIcon ($8001)

$00 - iconType -~ Word
$02 - iconsSize - Word
304 - iconHeight - Word
306 p— iconWidth —~ Word
$08

. iconImage Army
$xx

iconMask . Array

iconType

iconSize

iconMask

iconHeight
iconWidth

iconImage

Contains flags defining the type of icon stored in the icon record.

Color Indicator

Specifies the size of the icon image stored at i conImage, in bytes.

Bit 15

Indicates whether the icon contains a color or
black-and-white image

1 - Icon is color

0 - Icon is black and white

Specifies the height of the icon, in pixels.
Specifies the width of the icon, in pixels.

Contains iconsize bytes of icon image data.

Contains iconsize bytes of mask data to be applied to the image
located at iconImage.

E-46 Apple IIGS Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft . 30 August 1989

rKTransTable $8021

Figure E-21 defines the layout of resource type rkTransTable ($8021). Resources of
this type define keystroke translation tables for use by the Event Manager (see

Chapter 31, “Event Manager Update,” earlier in this book for complete information on the
format and content of resources of this type).

= Figure E-21 Keystroke translation table, type rKTransTable ($8021)

$000 |
: transTable : 256 Bytes—Keystroke translation array
$100
. deadKeyTable . xx Bytes—Dead-key validation array
$100+xx

replacementTable : Yy Bytes—Dead-key replacement array

i 1

transTable This is a packed array of bytes used to map the ASCII codes produced
by the keyboard into the character value to be generated. Each cell in
the array directly corresponds to the ASCII code that is equivalent to
the cell offset. For example, the t ransTable cell at offset $0D (13
decimal) contains the character replacement value for keyboard code
$0D, which, for a straight ASCII translation table, is a Return character
(CR). The transTable cells from 128 to 255 ($80 to $FF) contain
values for Option-key sequences (such as Option-S).

Appendix E Resource Types E-47

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

deadkeyTable This table contains entries used to validate dead keys. Dead key
refers to keystrokes used to introduce multikey sequences that result
in single characters. For example, pressing Option-u followed by e
yields an e with an umlaut. There is one entry in deadkeyTable for
each defined dead key. The last entry_ must be set to $0000. Each entry
must be formatted as follows:

deadKey
offset

deadKey

offset

replacementTable

Byte—Character code for dead key
Byte—Offset from deadKeyTable into replacementTable

Contains the character code for the dead key. The system uses
this value to check for user input of a dead key. The system
compares this value with the first user keystroke.

Byte offset from beginning of deadkeyTable into relevant
subarray in replacementTable, divided by 2. The system
uses this value to access the valid replacement values for the

dead key in question. '

This table contains the valid replacement values for each dead key
combination. This table is made up of a series of variable-length
subarrays, each relevant to a particular dead key. The last entry in each
sub-array must be set to $0000. Each entry in the
replacementTable must be formatted as follows:

deadKey
offset

scanKey

replaceValue

Byte——Character code for dead key
Byte—Offset from deadKeyTable inio replacementTable

Contains a valid character code for dead key replacement. The
system uses this field to determine whether the user entered a
valid dead key combination. The system compares this value
with the second user keystroke.

Contains the replacement value for the character specified in
scanKey for this entry. The system delivers this value as the
replacement for a valid dead key combination.

E-48 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft - 30 August 1989

rListRef

Figure E-22 defines the layout of the array element that comprises resource type
rListRef ($801C). Resources of this type define members of list controls (see

Chapter 28, “Control Manager Update,” earlier in this book for more information on list
controls). A single rListRe£ resource may contain more than one of these elements; you
concatenate the elements to form the resource.

$801C

» Figure E-22 List member reference array element, type rListRef ($801C)

$00 []
— ko)) — Long—Pointer to list string
$04 itemFlag Byte—Control flags for list member
$05
: item - Array—List member data; (1istMemSize - S)bytesofdata
I |
itemPtr Pointer to the list member string.
itemFlag Control flags for the member.
memSelect Bits 67 Indicates whether the item is selected
00 - Item is enabled but not selected
01 - Item is disabled (cannot be selected)
10 - Item is selected
11 - Invalid value
Reserved Bits 0-5 Must be setto 0
item Application-specific data for the list member. The 1istMemSize

field of the list control template specifies the size of this field, plus 5.
For example, in order to assign a two-byte tag to each list member,
you would set 1istMemsize to 7 (5+2) and place the tag value at
item in each list member.

Appendix E Resource Types E-49

Apple IIGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

rMenu $8009

Figure E-23 defines the layout of resource type rMenu ($8009). Resources of this type
define parameters to some new Menu Manager tool calls. See
Chapter 37, “Menu Manager Update,” earlier in this book for more information.

= Figure E-23 Menu template, type rMenu ($8009)

00| version | Word—Version number for template; must be set to 0
502 — menulb -] Word—Menu ID
§04 — menuFlag ~ Word—Menu ﬂag word
$06 - menuritiemer - Long—Reference to menu title string
$0A
. itemRefArray - nLongs—References to menu items
l |
version Identifies the version of the menu template. The Menu Manager uses

this field to distinguish between different revisions of the template.
Must be set to 0.

menuID Unique identifier for the menu. See Chapter 13, “Menu Manager,” in the
Toolbox Reference for information on valid values for menu1p.

E-50 Applé 11Gs Toolbox Reference, Volume 3

Apple 11GS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

menuFlag Bit flags controlling the display and processing attributes of the menu.
Valid values for menuFriag are: .

titleRefType bits 14-15 Defines the type of reference in menuTitleRef:
00 - Reference is pointer
01 - Reference is handle
10 - Reference is resource ID
11 - Invalid value
itemRefType bits 12-13 Defines the type of reference in each entry of
itemRefArray (all ammay entries must be of the same
type):
00 - References are pointers
01 - References are handles
10 - References are resource IDs
11 - Invalid value
Reserved bits 9-11 Must be set to 0
alwaysCallmChoose
bit 8 Causes the Menu Manager to call 2 custom menu
defProc mChoose routine even when the mouse is not
in the menu rectangle (supported tear-off menus):
0 - Do not always call mChoose routine
1 - Always call mChoose routine
disabled bit 7 Enables or disables the menu:
0 - Menu enabled
1 - Menu disabled
Reserved bit 6 Must be set to 0
XOR bit 5 Controls how selection highlighting is performed:
0 - Do not use XOR to highlight
1 - Use XOR to highlight item
custom bit 4 Indicates whether custom or standard menu:
0 - Standard menu
1- Custom menu
allowCache bit 3 Controls menu caching:
0 - Do not cache menu
1 - Menu caching allowed
Reserved bits 0~2 Must be set to 0

menuTitleRef Reference to title string for menu. The titleRe£Type bits in
menuFlag indicate whether menuTitleRe£ contains a pointer, a
handle, or a resource ID. If menuTitleRef is a pointer, then the title
string must be a Pascal string. Otherwise, the Menu Manager can
retrieve the string length from control information in the handle.

Appendix E Resource Types E-51

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft B 30 August 1989

itemRefArray Armay of references to the menu items for the menu. The
itemRefType bits in menuFlag indicate whether the entries in the
array are pointers, handles, or resource IDs. Note that all array entries
must contain the same reference type. The last entry in the array must
be set to $00000000.

E-52 Apple IIGSs Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

rMenuBar $8008

Figure E-24 defines the layout of resource type rMenuBar ($8008). Resources of this type
define the characteristics of a menu bar for new Menu Manager tool calls. For more
information, see Chapter 37, “Menu Manager Update,” earlier in this book.

= Figure E-24 Menu bar record, type rMenuBar ($8008)

$0 1 ersion — Word—Version number for template; must be setto 0
$02 - menuFlag —| Word—Menu bar ﬂag word
$04
© menuRefArray * n Longs—References to menus
I J
version Identifies the version of the menu bar template. The Menu Manager

uses this field to distinguish between different revisions of the
template. Must be set to 0.

menuBarFlag Bit flags controlling the display and processing attributes of the menu
bar. Valid values for menuBarFlag are:

menuRefType bits 14~15 Defines the type of reference in each entry of
menuRefArray (all array entries must be of the same
type):
00 - References are pointers
01 - References are handles
10 - References are resource IDs
11 - Invalid value

Reserved bits 0-13 Must be set to 0

menuRefArray Aray of references to the menus for the menu bar, The menure£Type
bits in menuBarF1lag indicate whether the entries in the array are
pointers, handles, or resource IDs. Note that all array entries must
contain the same reference type. The last entry in the array must be set
to $00000000.

Appendix E Resource Types E-53

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

rMenulItem $800A

Figure E-25 defines the layout of resource type rMenuItem ($800A). Resources of this
type define menu items to some new Menu Manager tool calls. See
Chapter 37, “Menu Manager Update,” earlier in this book for more information.

= Figure E-25 Menu item template, type rMenuItem ($800A)

$00 | version - Word—Version number for template; must be set to 0
02 ieem» - Word—MenuitemID
$04 itemChar Byte—Primary keystroke equivalent character
§05 itemAltChar Byte—Alternate keystroke equivalent character
$06 | itemCheck ~| Word—Character code for checked items
$08 | itemFlag — Word—Menu item flag word
$0A | -
— itemTitleRef —{ Long—Reference to item title string
version Identifies the version of the menu item template. The Menu Manager

uses this field to distinguish between different revisions of the menu
item template. Must be set to 0.

itemID Unique identifier for the menu item. See Chapter 13, “Menu Manager,”
in the Toolbox Reference for information on valid values for itemID.

itemChar, itemAltChar
These fields define the keystroke equivalents for the menu item. The
user can select the menu item by pressing the Command key along with
the key corresponding to one of these fields. Typically, these fields
contain the upper and lower case ASCII codes for a particular
character, If you only have a single key equivalence, set both fields
with that value.

itemCheck Defines the character to be displayed next to the item when it is
checked.

E-54 Apple IiGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft - . 30 August 1989

itemFlag Bit flags controlling the display attributes of the menu item. Valid
values for itemFlag are:
titleRefType bits 14-15 Defines the type of reference in itemTitleRef:

00 - Reference is pointer

01 - Reference is handle

10 - Reference is resource ID
11 - Invalid value

Reserved bit 13 Must be set to 0
shadow bit 12 Indicates item shadowing:
0 - No shadow
1 - Shadow
outline bit 11 Indicates item outlining
0 - Not outlined
1 - Qutlined
Reserved bits 8-10 Must be set to 0
disabled bit 7 Enables or disables the menu item:

0 - Item enabled
1 - Item disabled
divider bit 6 Controls drawing divider below item:
0 - No divider bar
1 - Divider bar
XOR bit 5 Controls how highlighting is performed:
0 - Do not use XOR to highlight
1 - Use XOR to highlight item
Reserved bits 3-4 Must be set to 0
underline bit 2 Controls item underlining:
0 - Do not underline item
1 - Underline item
italic bit 1 Indicates whether item is italicized
0 - Not italicized
1 - Italicized
bold bit 0 Indicates whether item is drawn bold:
0 - Not bold
1-Bold

itemTitleRef Reference to title string for menu item. The titleRefType bits in
itemFlag indicate whether itemTitleRe£ contains a pointer, a
handle, or a resource ID. If itemTitleRef is a pointer, then the title
string must be a Pascal string. Otherwise, the Menu Manager can
retrieve the string length from control information in the handle.

Appendix E Resource Types E-55

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

rPString $8006

Figure E-26 defines the layout of resource type rPstring ($8006). Resources of this type
contain Pascal strings.

= Figure E-26 - Pascal string, type rPString ($8006)

$00 lengthByte Byte
$01

stringCharacters . nBytes

lengthByte Number of bytes of data stored in st ringCharacters amay.

stringCharacters
Array of 1engthByte characters,

E-56 Apple IIGS Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

rResName $8014

Figure E-27 defines the layout of resource type rResName ($8014). Resources of this type
define name strings for resources of a given type and ID. The resource ID value assigned to
an rResName resource must be formed as follows:

$0001xxxx where xxxx corresponds to the resource type for resources whose names
are defined in this resource '

Within the rRe sName resource you define name strings corresponding to resources with
specified resource IDs. Names are stored in Pascal strings, and must be unique within the
appropriate resource type. Resource names are not required, so you may specify names
for only a few resources within a given type.

= Figure E-27 Resource name array, type rResName ($8014)

$00 = versNum -~ Word
$021 -

— nameCount -1 Long

506 |

: resNames - Aray of nameCount Name blocks

versNum Specifies the resource template version. Must be set to 1.

nameCount Count of entries in the resNames name definition array.

Appendix E Resource Types E-57

Apple IIGS Toolbox Reference, Volume 3 Beta Draft o 30 August 1989

resNames Array of name strings. Each entry must be formatted as follows:
$00{ .
- namedResID = IDﬂg
$04
resName Pascal string

namedResID ID of the resource for this name,

resName Name string for the resource.

E58 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

rStringList $8007

Figure E-28 defines the layout of resource type rstringList ($8007). Resources of this
type contain an array of Pascal strings.

= Figure E-28 Pascal string array, type rStringList ($8007)

SOO — count —| Word
$02
: strings - Array of Pascal strings (resources of type rPString)
l |
count Indicates the number of Pascal strings stored at strings.
strings An array of count Pascal strings.

Appendix E Resource Types E-59

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

rText $8016

Figure E-29 defines the layout of resource type rText ($8016). Resources of this type
contain text blocks (data arrays with no embedded length information; block length must
be indicated in other fields).

= Figure E-29 Text block, type rText ($8016)

$00 I

stringCharacters Bytes

i 1

stringCharacters
Array of up to 65,535 characters. Any length information is contained

in a separately maintained field.

E-60 Applé IiGs Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

rTextBlock $8011

Figure E-30 defines the layout of resource type rTextBlock ($8011). Resources of this
type contain text blocks (data arrays with no embedded length information; block length
must be indicated in other fields).

s Figure E-30 Text block, type rTextBlock ($8011)

$00] |

stringCharacters : Bytes

i l

stringCharacters

Array of up to 65535 characters. Any length information is contained in
a separately maintained field.

Appendix E Resource Types E-61

Apple 1iGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

rTextBox2 S800B

Figure E-31 defines the layout of resource type rTextBox2 ($800B). Resources of this
type contain data formatted as input to the LETextBox2 LineEdit tool call (see
Chapter 10, “LineEdit Tool Set,” in the Toolbox Reference for details).

s Figure E-31 LETextBox2 input text, type rTextBox2 ($800B)

SOO - length — Word

$02

stringCharacters : Bytes

length Indicates the number of bytes stored at st ringCharacters. Valid
values lie in the range from 1 to 32767.

stringCharacters
Array of up to 32767 characters. Formatting information is embedded

in the character array, and is included in the value of 1ength. See
Chapter 10, “LineEdit Tool Set,” in the Toolbox Reference for complete
information on the syntax for this embedded appearance
information. »

E-62 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

rToolStartup $8013

Figure E-32 defines the layout of resource type rToolstartup ($8013). Resources of

this type define tool set start up records for use with the Tool Locator StartUpTools
and ShutbownTools tool calls.(see Chapter 51, “Tool Locator Update,” earlier in this

book for more information).

= Figure E-32 Tool start stop record, type rToolstartup ($8013)

$00

= flags —| Word—Flag word—must be set to 0
§02 videoMode —~| Word—Video mode for QuickDraw II
§04 | resFileID -~ Word—Setby StartUpTools
$06 .
— dpPageHandle —{ Long—Setby StartUpTools
$0A — numTools —| Word--Number of entries in toolArray
$0C
toolArray . numTools ToolSpec records
I |
videoMode Defines the video mode for QuickDraw II. See
Chapter 16, “QuickDraw 11,” in the Toolbox Reference for valid values.
resFileID The startUpTools call sets this field. ShutbownTools requires it

as input.

dpageHandle The StartUpTools call sets this field. ShutbownTools requires it
as input.

Appendix E Resource Types E-63

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

toolArray Each entry defines a tool set to be started. The numToo1ls field
specifies the number of entries in this array. Each entry is formatted as
follows: '
$00 — toolNumber - Word—Tool set identifier
020 inversion -] Word—Minimum acceptable tool set version

toolNumber Specifies the tool set to be loaded Valid tools set numbers are
discussed in Chapter 51, “Tool Locator Update,” earlier in this
book.

toolversion Specifies the minimum acceptable version for the tool set. See
Chapter 24, “Tool Locator,” in the Toolbox Reference for the
format of this field.

E-64 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

rTwoRects $801A

Figure E-33 defines the layout of resource type rTwoRects ($801A).

= Figure E-33 Two rectangles, type rTwoRects ($8014)

$00 | |
rectl Rectangle
| |
$08 | |
rect2 Rectangle
l |
rectl First rectangle.
rect2 Second rectangle.

Appendix E Resource Types E-65

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

rWindColor $8010

Figure E-34 defines the layout of resource type rwindColox ($8010). Resources of this
type define window color tables for the Window Manager.

» Figure E-34 Window color table, type rwindcolor ($8010)

§00 frameColor — Word
$021 iitiecolor - Word
§04 1 tBarColor — Word
§06 | growColor — Word
081 infoColor — Word

frameColor Color of the window frame and of the alert frame.

Reserved bits 8-15 Must be set to 0

windowFrame bits 47 Color of window frame—value is an index into the
active color table

Reserved bits 0-3 Must be set to 0

titleColor Colors of inactive title bar, inactive title, and active title:

Reserved bits 12-15 Must be set to 0

inactiveTitleBar bits 811 Color of inactive title bars—value is an index into the
active color table

inactiveTitle bits 47 Color of inactive titles—value is an index into the
active color table

activeTitle bits 0-3 Color of active titles, close box, and zoom box—
value is an index into the active color table.

tBarColor Color and pattern information for active title bar:

pattern bits 8-15 Defines pattern for title bar:
$00 - Solid
$01 - Dither
$02 - Lined

patternColor bits 4-7 Color for pattern—value is an index into the active
color table

backColor bits 0-3 Background color—value is an index into the active
color table.

E-66 Apple 1IGs Toolbox Reference, Volume 3

Apple IIGS Toolbox: Reference, Volume 3 Beta Draft 30 August 1989

‘growColor Color of size box and alert frame's middle outline:

alertMidFrame bits 12-15 Color of alert frame middle outline—value is an index
into the active color table

Reserved bits 811 Must be set to 0

sizeUnselected Dbits 47 Color for unselected size box—value is an index into
the active color table

sizeSelected bits 0-3 Color for selected size box—value is an index into the
active color table,

infoColor Color of information bar and alert frame's inside outline:

alertMidFrame bits 12-15 Color of alert frame inside outline—value is an index
into the active color table

Reserved bits 811 Mustbesetto 0

infoBar bits 4~7 Color for information bar—value is an index into the
active color table

Reserved bits -3 Must be set t00-

Appendix E Resource Types E-67

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft ‘ 30 August 1989

rWindParaml S800E

Figure E-35 defines the layout of resource type rwindparami ($800E). This resource
defines a template used to create windows with the Newwindow2 Window Manager tool
call (see Chapter 52, “Window Manager Update,” earlier in this book). Most of these fields
correspond to fields in the NewWindow parameter list (defined in the Toolbox Reference).

s Figure E-35 Window template, type rwindParaml ($800E)

$00

- pllength — Word
$02 [plFrame — Word—See NewWindow wFrameBils parameter
$04 | -

- plTitle -~ Long
$08 | _ .

= plRefCon —-{ Long—See NewWindow wRefCon parameter
$0C

: plZoomRect : Reatangle—See NewWindow wZoom parameter
$14 | -

— plColorTable = long
§18 | plyorigin -~ Word—See NewWindow wYOrigin parameter
Sal pixorigin ~ Word—See NewWindow wXOrigin parameter
SIc plbatadeight —| Word—See NewWindow wDataH parameter
SIE | plbataWidth — Word—See NewWindow wDaiaW parameter
$20 | piMaxHeight — Word—See NewWindow twMaxH parameter
$22 | plMaxWidth — Word—See NewWindow twMaxW parameter
24 | plVerScroll — Word—See NewWindow wScrollVer parameter
§26 | piHorscroll — Word—See NewWindow wScrollHor parameter
$8 | iversage - Word—See NewWindow wPageVer parameter
24 1 plHorPage —| Word—See NewWindow wPageHor parameter

continued

E-68 Apple IIGS Toolbox Reference, Volume 3

Apple IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

continued
$2c | -
— plinfoText —| Long—See NewWindow winfoRefCon parameter
$30 plinfoHeight — Word—See NewWindow winfoHeight parameter
$321 |
= plDefProc — Long—See NewWindow wFrameDefProc parameter
§36| -
|- plinfobraw —| Long—See NewWindow winfoDefProc parameter
$3A1 _
- plContentDraw = bong—See NewWindow wContDeijc parameter
$3E
: piPosition - Rectangle—See NewWindow wPosition parameter
$46 | _
— plPlane — Long—See NewWindow wPlane parameter
$4A1 _
— plcontrollist — Long
$4E — plInDesc -~ Word
plLength Specifies the number of bytes in the template, including the length of
plLength. Must be set to $50.
plTitle Reference to title string for the window. The contents of p11nDesc

specify the type of reference stored here. The title must be stored in a
Pascal string, containing both a leading and a trailing space.

If p1Title is set to NIL, the Window Manager will create a window
without a title bar. If your program is creating a window with a title
bar, you must specify a title of some sort. In order to create a window
without a title, make p1Title (or titlePtr on the Newwindow2 call)
refer to a null string,

Note that the Window Manager creates a copy of the title string, so
that your program can free the memory for this string after issuing the
NewWindow2 call.

If you specify a non-NIL value for titlePtr on the Newwindow2 call,
this field is ignored.

Appendix E Resource Types E-69

Apble IIGS Toolbox Reference, Volume 3 Beta Draft » 30 August 1989

plColorTable Reference to the color table for the window. The contents of
plInDesc specify the type of reference stored here. If
plColorTable is set to NIL, the Window Manager assumes that
there is no color table for the window.

The format of the color table is defined in

Chapter 25, “Window Manager,” in the Toolbox Reference. If
plColorTable refers to a resource, then the color table must be
defined in a resource of type rWwindColor.

plControlList Reference to the template or templates defining controls for the
window. The Window Manager passes this value to the NewContro12
Control Manager tool call as the reference parameter. Note that
plInDesc contains the data for the NewControl2 referenceDesc
parameter. Refer to Chapter 28, “Control Manager Update,” in this
book for more information about NewCont rol2.

If this field is set to NIL, then the Window Manager assumes that there
is no control list for the window and does not call NewCont ro12.

plInDesc Defines the type of reference stored in p1colorTable and
plTitle. Also contains the referenceDesc value for NewContro12
that defines the contents of p1ControlList:

Reserved bits 12-15 Must be set to 0
colorTableRef bits 10-11 Define the type of reference stored in
plColorTable:

00 - Reference is pointer to color table
01 - Reference is handle to color table
10 - Reference is resource ID of rwindColor
resource
11 - Invalid value

titleRef bits 8-9 Define the type of reference stored in p1Title:
00 - Reference is pointer to Pascal string
01 - Reference is handle to Pascal string
10 - Reference is resource ID of xrPSt ring resource
11 - Invalid value

controlRef bits -7 Define the type of reference stored in
plControlList. Passed directly to the
NewCont rol2 Control Manager tool call as the
referenceDesc parameter. For valid values, see the
description of the NewContro12 tool call in
Chapter 28, “Control Manager Update,” earlier in this
book.

E-70 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft - 30 August 1989

rWindParam2 S800F

Figure E-36 defines the layout of resource type rwindpParam2 ($800F). This resource
defines a template used to create windows with the Newwindow2 Window Manager tool
call (see Chapter 52, “Window Manager Update,” earlier in this book). Use this template
for custom windows,

= Figure E-36 Window template, type rwindParam2 ($800F)

001 p2ListID — Word
$02 | -
— p2DefProc — Long
$06
p2Data -+ Byte array
l |
p2ListID Specifies the resource template version. Must be set to NIL.
p2DefProc Pointer to the definition procedure for the window. When using the
rWwindParam2 window template, you must pass a pointer to a valid
definition procedure, either in the template or with the defProcPtr
parameter to the Newwindow2 Window Manager tool call. On disk,
this field does not contain a valid value.
p2Data Window definition data required by the routine pointed to by

p2DefProc. The format and content of this field is determined by
the window definition procedure.

Appendix E Resource Types E-71

Apple 1IGS Toolbax Reference, Volume 3 Beta Draft 30 August 1989

Appendix F Delta Guide

This appendix collects all information that corrects errors or clarifies
ambiguities in Volumes 1 and 2 of the Toolbox Reference. This

information was derived from the “Error corrections” and “Clarifications”
sections of each chapter in this book. This appendix contains a separate
major section for tool set to be addressed; the sections are presented
alphabetically, by tool set name.

F-1

Apple 11GS Toolbox Reference, Volume 3 Beta Draft ‘ 30 August 1989

Apple Desktop Bus

The following sections correct errors or omissions in
Chapter 3, “Apple Desktop Bus Tool Set,” in Volume 1 of the Toolbox Reference.

Error correction

The parameter table for the ReadKeyMicroData tool call ($0A095 in Volume 1 of the
Toolbax Reference incorrectly describes the format for the readconfig command ($0B).
The description should be as follows.

Command datalength Name Action

$0B 3 readConfig Read configuration; dataPtr refers to a
3-byte data structure:
Byte ADB keyboard and mouse
addresses
low nibble - keyboard
high nibble - mouse
Byte Keyboard layout and display
language
low nibble - keyboard layout
high nibble - display language
Byte Repeat rate and delay
low nibble - repeat rate
high nibble - repeat delay

The description of this configuration record is also wrong in the tool set summary. The
following table shows the correct information.

F-2 Apple 11IGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Name Offset Type Definition

ReadConfigRec (configuration record for ReadKeyMicroData)

rcADBAddr $0000 Byte ADB keyboard and mouse addresses
low nibble - keyboard
high nibble - mouse

rcLayoutOrLang $0001 Byte Keyboard layout and
display language
low nibble - keyboard layout
high nibble - display language
rcRepeatDelay $0002 Byte Repeat rate and delay
low nibble - repeat rate
high nibble - repeat delay

Clarification

This section presents new information about the AsyncaDBReceive call.

You can call AsyncADBReceive to poll a device using register 2, and it will return certain
useful information about the status of the keyboard. The call returns the following
information in the specified bits of register 2:
Bit 5: 0-Caps Lock key down
. 1-Caps Lock key up
Bit 3: 0-Control key down
1-Control key up
Bit 2: 0-Shift key down
1-Shift key up
Bit 1: 0-Option key down
1-Option key up
Bit 0: 0-Command key down
1-Command key up

Appendix F Delta Guide F-3

Apple 1IGS Toolbox Reference, Volume 3

Beta Draft 30 August 1989

Control Manager

The following sections correct errors or omissions in Chapter 4, “Control Manager,” in
Volume 1 of the Toolbox Reference.

Error corrections

This section documents errors in Chapter 4, “Control Manager,” in Volume 1 of the Toolbox

Reference.

= The color table for the size box control in the Toolbox Reference is incorrect. The
correct table follows, with new information in boldface.

growOutline word
Bits 8-15
Bits 4-7
Bits 0-3

growNorBack word
Bits 8-15
Bits 4-7
Bits 0-3

growSelBack word
Bits 8-15
Bits 4-7
Bits 0-3

Color of size box’s outline

= Zero

= outline color

= Zero :

Color of interior when not highlighted
= Zero

= background color

= icon color

Color of interior when highlighted
= Zero

= background color

= icon color

= On page 4-76 of the Toolbox Reference, in the section that covers the setCt1params
call, it states that the call “Sets new parameters to the control’s definition
procedure . . ." This description is misleading; the call does not directly set the
parameters. Rather, it sends the new parameters to the control's definition procedure,
unlike setct1value, which actually sets the appropriate value in the control record
and then passes the value on to the definition procedure.

F-4 Apple IIGS Toolbox Reference, Volume 3

Apple IIGS Toolbox: Reference, Volume 3 Beta Draft - 30 August 1989

Clarifications

The following items provide additional information about features previously described
in the Toolbox Reference.

s The barArrowBack entry in the scroll bar table was never implemented as first
intended, and is now no longer used.

» The Control Manager preserves the current port across Control Manager calls, including
those that are passed through other tools, such as the Dialog Manager.

= The Control Manager preserves the following fields in the port of a window that
contains controls:

bkPat background pattern
pnLoc pen location
pnSize pen size

pnMode pen mode

pnPat pen pattern

pnMask pen mask

pnVis pen visibility
fontHandle handle of current font
fontID ID of current font
fontFlags font flags

txSize text size

txFace text face

txMode text mode

spExtra value of space extra
chExtra value of character extra
fgColor foreground color
bgColor background color

» The control definition procedures for simple buttons, check boxes, and radio buttons
can now compute the size of their boundary rectangles automatically. The computed
size is based on the size of the title string for the button.

» To ensure predictable color behavior, you should always align color table~based
controls on an even pixel boundary in 640 mode. If you do not do so, the control will
not appear in the colors you specify, due to the effect of dithering.

Appendix F Delta Guide F-5

Apple 1iGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

Dialog Manager

The following sections correct errors or omissions in Chapter 6, “Dialog Manager,” in
Volume 1 of the Toolbox Reference.

Error corrections

This section explains chhnges that have been made to the Dialog Manager’s
documentation in the Apple IIGS Toolbox Reference.

» The documentation for SetDItemType on page 6-82 of the Toolbax Reference says
that the call is used to change a dialog item to a different type. In fact,
- setDItemType should be used only to change the state of an item from enabled to
disabled or vice versa.

s The Dialog Manager does not support dialog item type values of picItemor
iconItem, contrary to what the Toolbox Reference states in Table 6-3 on page 6-12.

F-6 Apple 1Gs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Integer Math Tool Set

The following section describes a bug that has been fixed in the Integer Math Tool Set.

Clarifications

s The Long2Dec Integer Math tool call now correctly handles input long values that have
the low-order three bytes set to zero. Previously, if the input long had its low-order
three bytes set to zero, Long2Dec would always return a zero value, even if the high-
order byte was non-zero.

Appendix F Delta Guide F-7

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft Lo 30 August 1989

List Manager

The following sections correct errors or omissions in Chapter 11, “List Manager,” in Volume
1 of the Toolbox Reference.

Clarifications

s The Apple IIGs Toolbox Reference states that a disabled item of a list cannot be
selected. In fact, a disabled item can be selected, but it cannot be highlighted. The
List Manager provides the ability to select disabled (dimmed) items so that it is
possible, for instance, for a user to select a disabled menu choice as part of a help
dialog. To make an item unselectable, set it inactive (see “List Manager definitions”
later in this chapter).

» Any List Manager tool call that draws will change fields in the GrafPort. If you are using
List Manager tool calls you must set up the GrafPort correctly and save any valuable
GrafPort data before issuing the call.

s Member text is now drawn in 16 colors in both 320 and 640 mode.

= Previous versions of List Manager documentation do not clearly define the relationship
between the 1istView, 1istMemHeight, and listRect fields in the list record.
To clarify this point, note that the following formula must be true for values in any list
record:

listView *listMemHeight +2=1listRect.wv2 -listRect.vl

If you set 1istview to 0, the List Manager will automatically adjust the
1istRrect.v2 field and set the 1istview field so that this formula holds. Note that
if you pass a 0 value for 1istview the bottom boundary of 1istRect may change
slightly.

List Manager definitions

The following terms define the valid states for a list item.

inactive Bit 5 of the list item’s memF1ag field is set to 1. Inactive items appear
dimmed and cannot be highlighted or selected.

disabled Bit 6 of the list item’s memF1ag field is set to 1. Disabled items appear
dimmed and cannot be highlighted.

F-8 Apple IIgs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

enabled Bit 6 of the list item’s memF1ag field is set to 0. Enabled items appear
normal and can be highlighted.
selected Bit 7 of the list item’s memF1ag field is set to 1. This bit is set when a

user clicks on the list item, or the item is within a range of selected items.
A selected item appears highlighted only if it is also enabled.

highlighted A member of a list appears highlighted only when it is both selected and
enabled. This means that bit 7 of the memF1ag field is set to 1 and bit 6
is set 1o 0. A highlighted member is drawn in the highlight colors.

Appendix F Delta Guide ~ F-9

Apple 1IGs Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Memory Manager

The following sections correct errors or omissions in Chapter 12, “Memory Manager,” in
Volume 1 of the Toolbox Reference.

Error correction

On page 12-10 of the Toolbox Reference, Figure 12-7 shows the low-order bit of the User ID
is reserved. This is not correct. The figure should show that the main1D field comprises
bits 0-7, and that the mainID value of $00 is reserved.

Clarification

The Toolbox Reference documentation of the SetHandlesize call ($1902) states “If you
need more room to lengthen a block, you may compact memory or purge blocks.” This is
misleading. In fact, to satisfy a request the Memory Manager will compact memory or
purge blocks in order to free sufficient contiguous memory. Therefore, the sentence
should read “If your request requires more memory than is available, the Memory Manager
may compact memory or purge blocks, as needed.”

F-10 Apple IIGS Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft - 30 August 1989

Menu Manager

The following sections correct errors or omissions in Chapter 13, “Menu Manager,” in
Volume 1 of the Toolbox Reference.

Error corrections

s In the description of the set sysBar tool call (pages 13-86 and 13-3), the Toolbox
Reference states that, after an application issues this call, the new system menu bar
becomes the current menu bar. This is incorrect. Your application must issue the
SetMenuBar tool call to make the new menu bar the current menu bar.

» In the definition of the menu bar record (pages 13-17-18), the Toolbox Reference shows
that bits 0-5 of the ct1Flag field are used to indicate the starting position for the
first title in the menu bar, This is incorrect. The ct1Hilite field defines the starting
position for the first title. Note further that the entire ct 1Hilite field is used in this
manner. The documented purpose of the ct 1Hilite field (number of highlighted
titles) is not supported by the Menu Bar record.

Clarifications

s The setBarColors tool call changes the color table for all menu bars in 2 window. If
you want to use separate color tables for different menu bars, your application must
build 2 menu bar color table and modify the ct1color field of the appropriate
control record to point to this custom color table. See “SetBarColor” in
Chapter 13, “Menu Manager,” of the Toolbox Reference for the format and contents of a
menu bar color table.

= The description of the InsertMenu tool call should also note that your application
must call FixMenuBar before calling DrawMenuBar in order to display the modified
menu bar.

» The description of the InitPalette tool call in the Toolbox Reference should also
note that the call changes color tables 1 through 6 to correspond to the colors needed
for drawing the Apple logo in its standard colors.

s The calcMenusize call uses the newWidth and newHeight parameters to compute a
menu's size. These parameters may contain the width and height of the menu, or may
contain the values $0000 or $FFFF. A value of $0000 tells calcMenusize to calculate
the parameter automatically. A value of $FFFF tells it to calculate the parameter only if
the current setting is 0.

- Appendix F Delta Guide F-11

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

The effect of all three uses:

o Pass the new value. The value passed will become the menu'’s size. Use this
method when a specific menu size is needed. '

o Pass $0000. The size value will be automatically computed. This option is useful if
menu items are added or deleted, rendering the menu’s size incorrect. The menu’s
height and width can be automatically adjusted by calling calcMenusize with
newWidth and newHeight equal to $0000.

o Pass $FFFF. The width and height of a menu is 0 when it is created. FixMenuBar
calls calcMenusize with newWidth and newHeight equal to $FFFF to calculate
the sizes of those menus with heights and widths of 0.

F-12 Apple IIGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Miscellaneous Tool Set

The following sections correct errors or omissions in Chapter 14, “Miscellaneous Tool Set,”
in Volume 1 of the Toolbox Reference.

Error corrections

» On page 14-58 of the Toolbox Reference, Figure 14-3 shows the low-order bit of the User
ID is reserved. This is not correct. The figure should show that the main1D field
comprises bits 0~7, and that the main1D value of $00 is reserved.

s The sample code on page 14-28 contains an error. In the code to clear the 1 second IRQ
source, the second instruction reads

TSB $C032
This instruction should read
TRB $C032

s The descriptions of the PackBytes and UnPackBytes tool calls in unclear with
respect to the startHandle parameter to each call. The stack diagrams correctly
describe the parameter as a pointer to a pointer. However, the C sample code for each
call defines startHandle as a handle. In both cases, startHandle is not a Memory
Manager handle, but is a pointer to a pointer. Creating startHandle as a handle will
cause unpredictable system behavior.

Appendix F Delta Guide F-13

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft ' 30 August 1989

Print Manager

The following sections correct errors or omissions in Chapter 15, “Print Manager,” in
Volume 1 of the Toolbox Reference.

Error corrections

This section documents errors in the Toolbox Reference.

The diagram for the job subrecord, figure 15-10 on page 15-14 of the Toolbox Reference,
shows that the £Fromusr field is a word. This is incorrect. The £Fromus field is
actually a byte. Note that the offsets for all fields following this one are incorrect, as a
result. This error is also reflected in the tool set summary at the end of the chapter.

The description of the PrJobDialog tool call states that “The initial settings
displayed in the dialog box are taken from the printer driver” This is incorrect. The
sentence should begin “The initial settings displayed in the dialog box are taken from
the print record"

Clarifications

The existing Toolbox Reference documentation for the prpicFile tool call does not
mention that your program may pass a NIL value for statusRecPtr. Passing a NIL pointer
causes the system to allocate and manage the status record internally.

The prpixelMap call (documented in Volume 1 of the Toolbox Reference) provides an
easy way to print a bitmap. It does much of the required processing, and an
application need not make the calls normally required to start and end the print loop.
The srcLocPtr parameter must be a pointer to a JocInfo record (see Figure 16-3 in
Chapter 16, “QuickDraw I1,” in the Toolbax Reference for the layout of the locinfo
record). ‘

F-14 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

QuickDraw II

The following sections correct errors or omissions in Chapter 16, “QuickDraw I1,” in
Volume 2 of the Toolbox Reference.

Error corrections

The following items provide corrections to the documentation for QuickDraw 1II in the
Apple 1IGSs Toolbox Reference:

» The documentation in the Toolbox Reference that explains pen modes is somewhat
misleading, There are, in fact, 8 drawing modes, and you may set the pen to draw lines
and other elements of graphics in any of these modes. There are also 16 modes used for
drawing text, and they are completely independent of the graphic pen modes. The 8
drawing modes listed in Table 16-9 on page 16-235 are valid modes for either the text
pen or the graphics pen. You can set either pen to any of these modes by using the
appropriate calls. You can also set the text pen to 8 other modes. These modes are
listed in the table on page 16-260 of the Toolbax Reference. The set PenMode call sets
the mode used by the graphics pen; the setTextMode call sets the mode used by the
text pen. Setting either one does not affect the other.

s There are two versions of the Apple 11GS standard 640-mode color tables, one on page
16-36 and one on page 16-159. The two tables are different; Table 16-7 on page 16-159
is correct. '

a In the QuickDraw II chapter, the Apple 1IGS Toolbox Reference states that the
coordinates passed to the LineTo and MoveTo calls should be expressed as global

coordinates. In fact, the coordinates must be local coordinates, and must refer to the
GrafPort in which the drawing or moving takes place.

Appendix F Delta Guide F-15

Apple IIGS Toolbox Reference, Volume 3 Beta Draft - 30 August 1989

Sound Tool Set

The following sections correct errors or omissions in Chapter 20, “Sound Tool Set,” in
Volume 2 of the Toolbox Reference.

Error corrections

This section provides corrections to the documentation of the Sound Tool Set in the
Apple IIGS Toolbox Reference.

» The documentation of the FFSoundDoneStatus call includes an error. You will note
that the paragraph that describes the call does not agree with the “Stack after call”
diagram. The text states that the call returns TRUE if the specified sound is still
playing, whereas the diagram states that it returns FALSE if still playing. The diagram,
not the text, is correct.

s There is an undocumented distinction between a generator that is playing a sound and
one that is active. A generator that is playing a sound returns FALSE in response to an
FFSoundDoneStatus call. One that is active may or may not be playing a sound, the
value of the flag returned by FFsoundstatus is TRUE. Active generators are those
that are allocated to a voice. At any given moment the generator may be playing a
sound, and so the FFSoundDoneStatus returns FALSE—or it may be silent between
notes, in which case FFSoundboneStatus returns TRUE.

Clarification

This section presents more complete information about the FFStartSound tool call,
including further explanation of its parameters, a new error code, an example procedure
for moving a sound from the Macintosh to the Apple IIGS and some sample code
demonstrating the use of the call. The original documentation for this call is in

Chapter 20, “Sound Tool Set,” in Volume 2 of the Toolbax Reference.

F-16 Apple 1IGs Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

FFStartSound

The freeform synthsizer is designed to play back long wave forms. In order to handle
longer waveforms the synthesizer uses two buffers (which must be the same size),
alternating its input from one to the other. When the synthesizer exhausts a buffer, it
generates an interrupt and then starts reading data from the other buffer. The Sound Tool
Set services the interrupt and begins refilling the empty buffer. This process continues
until the waveform has been completely played.

Note that all synthesizer input buffers must be buffer-size aligned. That is, if you have
allocated 4K buffers, then those buffers must be aligned on 4K memory boundaries.

Parameter Block

$00 | -
- waveStart - Long
504 - waveSize - Word
$06 | freqoffset — Word
308 = docBuffer ~ Word
$0A - bufferSize ~ Word
s$oc | |
- nextWavePtr - Long
310 — volSetting — Word
waveStart The starting address of the wave to be played, not in DOC RAM but in
Apple I1IGS system RAM. The Sound Tool Set loads the waveform data
into DOC RAM as it is played.
waveSize The size in pages of the wave to be played. A value of 1 indicates that

the wave is one page (256 bytes) in size; a value of 2 indicates that it
is two pages (512 bytes) in size—and so on as you might expect. The
only anomaly is that a value of 0 specifies that the wave is 65,536
pages in size.

Appendix F Delta Guide

F-17

Apple IIGs Toolbox Reference, Volume 3 Beta Draft 30 August 1989

freqoffset This parameter is copied directly into the Frequency High and
Frequency Low registers of the DOC. See the previous discussion of
those registers for more complete information.

docBuffer Contains the address in Sound RAM where buffers are to be allocated.
This value is written to the DOC WaveForm Table Pointer register. The
low-order byte is not used, and should always be set to 0.

bufferSize The lowest three bits set the values for the table-size and resolution
portions of the DOC Bank-Select/Table-size/Resolution register. See
the previous discussion of that register for details.

nextWavePtr This is the address of the next waveform to be played. If the field’s
value is 0, then the current waveform is the last waveform to be
played.

volSetting The low byte of the volsetting field is copied directly into the
Volume register of the DOC. All possible byte values are valid.

New error code

$0817 IRONotAssignedErr No master IRQ was assigned.
Moving a sound from the Macintosh to the Apple IIGS

To move a digitized sound from the Macintosh to the Apple 1IGS and play the sound, you
will have to perform the following steps

1. Save the sound as a pure data file on the Macintosh.
2. Transfer the file to the Apple IIGS (using Apple File Exchange, for example).

3. Filter all the zero sample bytes out of the file by replacing them with bytes set to $01.
This is very important, because the Apple IIGS interprets zero bytes as the end of a
sample.

4. Load the sound into memory with GS/OS calls.
5. Play the sound with the FFstartSound tool call.

Set the freqoffset parameter to $01B7 in order to play the sound at the same
tempo as the Macintosh.

F-18 Apple IIGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3

Sample code

Beta Draft

30 August 1989

This assembly-language code sample demonstrates the use of the FFStart Sound tool

call.

ChanGenType

STParamBlk

WaveSize

Freq
Start
Size
Nxtwave
Vol

PushWord chanGenType
PushLong #STParamBlk
_FFStartSound

DC.W $0201
DS.L 1
WaveSize

Entry
DS.W 1

DC.W $200
DC.W $8000
DC.W $6
DC.L $0
DC.W SFF

set generator for FFSynth
address of parm block
start free-from synth

generator 2, FFSynth

store the address of the
sound in system memory here

store the number of pages to
play here

; A9 set for each sample once

start at beginning
16k buffers
no new param block

; maximum volume

Appendix F Delta Guide F-19

Apple 1IGS Toolbax Reference, Volume 3 Beta Draft 30 August 1989

Window Manager

The following sections correct errors or omissions in Chapter 25, “Window Manager,” in
Volume 2 of the Toolbox Reference.

Error corrections

This section corrects some errors in the Window Manager documentation in the Apple IIGS
Toolbox Reference.

s The manual’s description of setzoomRect is incorrect. The correct description is as
follows:

Sets the £zoomed bit of the window’s wrrame record to 0. The rectangle passed to
SetZoomRect then becomes the window’s zoom rectangle. The window’s size and
position when Set ZoomRect is called becomes the window’s unzoomed size and
position, regardless of what the unzoomed characteristics were before set ZoomRect
was called.

n Apple liGS Toolbox Reference page 25-126, third line:
If wmTaskMask bit tmInfo (bit 15) = 1
should read:
If wmTaskMask bit tmInfo (bit 15) =0

s When used with a window that does not have scroll bars, the call windNewres calls the
window’s defProc to recompute window regions. A call to sizewindow is not
necessary under these circumstances. ’

F-20 Apple IIGs Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beh Draft 30 August 1989

Glossary

GL-1

Apple IIGS Toolbox Reference, Volume 3

ACIA: See Asynchronous Communications
Interface Adapter.

Adaptive Differential Pulse Code Modulation
(ADPCM): An algorithm for digitizing audio
samples. Used in the Apple IIGS Audio
Compression and Expansion Tool Set for
compressing audio samples.

ADPCM: See Adaptive Differential Pulse Code
Modulation.

ADSR: Acronym for attack, decay, sustain,
release. These terms describe the paradigm for
representing sounds in terms of a sound
envelope.

alert window: Similar to a modal dialog box;
used to present urgent or important information
to the user. You create alert windows with the
AlertWindow Window Manager tool call.

Asynchronous Communications Interface
Adapter (ACIA): Adapter card that allows the
Apple 1IGS to support asynchronous
communications protocols with external
devices.

attack: That portion of a sound envelope where
the sound is increasing from silence to its peak
loudness. See also ADSR.

control template: Structure containing the
information necessary for the NewControl2
Control Manager tool call to create a new
control.

decay: That portion of a sound envelope where
the sound falls off from its peak loudness to a
sustained level. See also ADSR.

Digital Oscillator Chip (DOC): Integrated
circuit that supports the sound capabilities of
the Apple IIGS.

DOC: See Digital Oscillator Chip.

drop sample tuning: Describes a technique for
changing the pitch of a played sound that relies
on skipping (or dropping) sound samples on

GL-2 Apple IIGS Toolbox Reference, Volume 3

Beta Draft

30 August 1989

playback. By dropping samples at a fixed rate,
the pitch of a sound can be raised in octave
increments.

envelope: A graphical representation of a
sound’s loudness over time. The envelope
typically consists of segments identified as
attack, decay, sustain and release, or ADSR.

extended controls: Controls created with the
NewControl2 Control Manager tool call, rather
than the NewContro1l call. Extended controls
have new-style control records that contain
more information than those created by
NewControl.

keystroke equivalent: A keystroke that
activates a control just as if the user had clicked
in the control.

menu template: Data structure used to define
menus, menu items, and menu bars to the Menu
Manager.

MIDI: See Musical Instrument Digital
Interface.

Musical Instrument Digital Interface
(MIDI): An interface specification that allows
external devices to control electronic musical
instruments.

out-of-memory queue: A queue maintained by
the Memory Manager. Queue elements (out-of-
memory routines) refer to code to be
executed when the Memory Manager detects an
out-of-memory condition.

out-of-memory routines: Code executed by
the Memory Manager when it detects an out-of-
memory condition. The out-of-memory queue
consists of a list of these routines.

password field: Do not echo user input,
allowing protected data entry. Your program can
specify the echo character; the default echo
character is asterisk (*).

pop-up menu: A menu that “pops” out of its
display rectangle when selected by the user. The

Apple 1IGS Toolbox Reference, Volume 3

two types of pop-up menus, type 1 and type 2
pop-up menus, have different limits on their
maximum size.

reference type: Indicates whether a storage
location contains a pointer, a handle, or a
resource ID for an object.

release: That portion of a sound envelope
where the note dies away to silence. See also
ADSR.

resource: Collection of data managed by the
Resource Manager for other applications.

resource file: A collection of one or more
resources. The Resource Manager provides
routines for accessing and updating resources in
a resource file.

resource ID: Uniquely identifies a resource
within the context of its resource type. The
Resource Manager provides facilities to assign
unique resource IDs. Compare resource name.

resource name: Uniquely identifies a resource
within the context of its resource type. Note
that resource names are not maintained by the
system; it is your program’s responsibility to

assign and manage them. Compare resource ID.

resource type: Identifies a class of resources
that share a common data layout. Individual
instances of resources of a given type are
identified by their unique resource ID or
resource name.

run item: An element in the run queue. Run
items specify program code to be executed by
the Desk Manager at regular intervals.

run queue: A queue maintained by the Desk
Manager that contains elements (run items)
that specify code to be executed at regular
intervals.

sample rate: Specifies the number of sound
samples the Apple IIGS DOC plays per second.

Beta Draft

30 August 1989

sustain: That portion of a sound envelope
where the note maintains a fairly constant
loudness, before it dies away. See also ADSR.

target control: That control which is currently
the recepient of user actions (keystrokes and
menu items).

TextEdit record: Describes a TextEdit user
session, whether or not that session is managed
as a control.

type 1 pop-up menu: A pop-up menu that will
not grow beyond its window constraints.
Compare type 2 pop-up menu.

type 2 pop-up menu: A pop-up menu that will
grow beyond its window if necessary to display
its menu items. Compare type 1 pop-up menu.

Glossary GL-3

Apple IIGS Toolbox Reference, Volume 3

Index

A

A/D convetter register
Sound Tool Set and 47- 16
acceleration, of MIDI Tool calls 38-
20
ACEBootInit 27- 5
ACECompBegin 27- 12
ACECompress 27- 13
ACEExpand 27- 15
ACEExpBegin 27- 17
ACEInfo 27- 11
ACEReset 27-9
ACEShutDown 27- 7
ACEStartUp 27- 6
ACEStatus 27- 10
ACEVersion 27- 8
activating TextEdit records 49- 74
Adaptive Differential Pulse Code
Modulation (ADPCM) 27- 3
adding items to a menu 37- 23
AddResource 45- 34
AddToOOMQueue 36- 8
AddToQueue 39- 3, 5
AddToRunQ 29- 6
ADPCM See Adaptive Differential
Pulse Code Modulation
alet windows
button strings 52- 8
example 52- 10
icon number 52- 7
message text 52- 8
separator character 52- 8
size characters 52- 6
special characters 52- 9
terminator character 52- 8
alert windows 52- 5-11
alert windows E- 2
AlertWindow 52- 22
AllNotesOff 41- 20
allocating TextEdit records 49- 104
AllocGen 41- 2, 21
AppleShare and Standard File 48- 3
AppleTalk print zone 42- 14
AppleTalk, MIDI Tool Set and 38- 22

Beta Draft

application switchers
and Resource Manager 45- 26, 41,
66
attack 41- 3
attack, decay, sustain, release 41- 2
auto-key events, limit on 31- 6
aWaveCount, Note Synthesizer
parameter 41- 9

B

bank select bit
Sound Too! Set and 47- 16
bank-select/table-size/resolution
register
Sound Tool Set and 47- 14
boundary rectangle
automatically computed for
some controls 28- 3
automatically computed for
some controls F- 5
control definition procedures 28-
16
bounds, control definition
procedure routine 28- 16
breakpoints and increments in
sound envelopes 41- 4
button strings, in alert windows 52- 8
bWaveCount, Note Synthesizer
parameter 41- 9

C

C strings, as resources E- 45
caching custom menus 37- 7
caching menus 37- 6
CalcMask 43- 3
CallCtIDefProc 28- 21
CallRoutine command, Note
Sequencer 40- 11
changing window size, and controls
52-4
channel register
Sound Tool Set and 47- 14
check box control
control template 28- 51
extended controf record 28- 98

30 August 1989

new features 287
check box control template E- 13
ChooseFont bugfix 32- 2
choosing printers 42- 3
classic desk accessories 29- 2, 8
ClearHeartBeat 39- 2
ClearIncr 40- 45
clearing TextEdit selection 49- 75
CloseResourceFile 45- 36
CMLoadResource 28- 23
CMReleaseResource 28- 24
color behavior and even pixel
alignment 28- 3
color behavior and even pixel
alignment F- 5
color tables
640 mode 43- 2
640 mode F- 15
menu bars 37- 2
menu bars F- 11
now use 4 bits for 640 mode 28- 4
size box control 28- 2
size box control F- 4
command interpreter, Note
Sequencer 40- 5
common style record, TextEdit 49-
88
CompileText 52- 24
completion routines, Note
Sequencer 40- 6, 54, 56
compressing TextEdit records 49- 78
compression ratios, in ACE Tool Set
27-2
compression, digital audio 27- 2
control commands, Note Sequencer
40-10
control definition procedures
bounds routine 28- 16
drag routine 28- 13
drawing in 28- 13
event routine 28- 14
initialize routine 28- 13
new messages 28- 12
notify multipart routine 28- 19
record size routine 28- 13

X-1

"Apple IIGS Toolbox Reference, Volume 3

sending messages to 28- 35
tab routine 28- 18
target routine 28- 15
window change routine 28- 20
window size routine 28- 17
Control Manager
new controls 28- 6
control register
Sound Tool Set and 47- 13
control template, check box E- 13
control template, icon button E- 15
contro} template, LineEdit E- 18
control template, list E- 20
control template, picture E- 24
control template, pop-up menu E-
2
control template, radio button E- 30
control template, scroll bar E- 32
control template, simple button E-
11
control template, size box E- 34
control template, static text E- 36
control template, TextEdit E- 38
control templates
and NewControl2 28- 42
check box control 28- 51
icon button control 28- 53
LineEdit control 28- 56
list control 28- 58, 61
pop-up menu control 28- 63
radio button control 28- 69
sample code 28- 83
scroll bar control 28- 71
simple button control 28- 49
size box control 28- 73
standard header
fCtlCanBeTarget flag 28- 14,
46
fCIsMultiPart flag 28- 19,
46
fCtIProcRefNotPtr flag 28-
46
fCiiTarget flag 28- 46
fCtTellAboutSize flag 28-
46
fCtlWantEvents flag 28- 46
fCtWantsEvents flag 28- 14
flag field 28- 45
ID field 28- 44
moreFlags field 28- 46

pCount field 28- 43

Beta Draft

procRef field 28- 44
rect field 28- 44

refCon field 28- 47
standard header 28- 43
static text control 28- 75 -
TextEdit control 28- 77
contro! templates 28- 6, 42-88
controls
and keystroke processing 28- 4
creating 28- 33
target 28- 5,18, 25, 31, 32, 36
controls, changes in drawing 28- 2
controls, changes in drawing F- 4
copying text, with TextEdit 49- 79
CountResources 45- 37
CountTypes 45- 38
CreateResourceFile 45- 39
creating menu bars 37- 25
creating menus 37- 24
creating TextEdit records 49- 104
creating windows 52- 32
ctiChangeBounds control definition
procedure message 28- 16
ctiChangeTarget contro! definition
procedure message 32
ctiChangeTarget control definition
procedure message 28- 15
ctiHandleEvent control definition
procedure message 36
ctlHandleEvent control definition
procedure message 28- 14
ct!HandleTab control definition
procedure message 28- 18
ctlID Control Manager field 93
ctlID Control Manager field 28- 26,
27,38
ctMoreFlags Control Manager field
35,93
ctiMoreFlags Control Manager field
28-28,39
ctiNotifyMultiPart contro! definition
procedure message 28- 19
ctiWindChangeSize control
definition procedure message
28-17
ctlWinStateChange control definition
procedure message 28- 20
current resource file, finding 45- 42
cursorOffset, TERecord KeyRecord
field 49- 23
custom menus and caching 37- 7
cutting text, with TextEdit 49- 80

X-2 Apple IIGs Toolbox Reference, Volume 3

30 August 1989

D

data structures, TextEdit 49- 29
deactivating TextEdit records 49- 81
dead key translation 31- 4
deallocating TextEdit records 49- 103
DeAllocGen 41- 22
Dec Register command, Note
Sequencer 40- 17
decay 41- 3
defProcs See control definition
procedures
DeleteFromQueue 39- 6
DeleteHeartBeat 39- 2
deleting text, with TextEdit 49- 80
desk accessories
and Resource Manager 45- 26, 41,
66
desk accessories, and Control
Manager 28- 29
desk accessories, and TaskMaster 52-
4,39
DetachResource 45- 40
dialog templates, Standard File 48- 12
displaying error messages 52- 29
displaying menu bar 37- 32
DOC memory 41- 10
DOC mode
Sound Tool Set and 47- 13
DOC registers
reading values 47- 21
setting values 47- 23
‘Sound Tool Set and 47- 11, 21, 23
doFraseBuffer, TextBdit filter
procedure routine 49- 18
doFraseRect, TextEdit filter
procedure routine 49- 17
doRectChanged, TextEdit filter
procedure routine 49- 19
draft mode, printing 42- 3
drag, control definition procedure
routine 28- 13
DrawlinfoBar 52- 27
drawing controls, changes in 28- 2
drawing controls, changes in F- 4
DrawMember2 35- 5
drop sample tuning
Sound Tool Set and 47- 10

empty menus, creating 37- 4
enabled, list items 35- 2
enabled, list items F- 9

Apple 1IGS Toolbox, Reference, Volume 3

EndFrameDrawing 52- 28
envelopes (sound) See sound
envelopes
error handlers, Note Sequencer 40-
6,54, %
error message text 52- 44
error messages, displaying 52- 29
error processing, with TextEdit 49- 84
ErrorWindow 52- 29
event, control definition procedure
routine 28- 14
extended control records
check box control 28- 98
icon button control 28- 101
LineEdit control 28- 104
list control 28- 107
picture control 28- 110
pop-up menu control 28- 113
radio button control 28- 118
scroll bar control 28- 121
simple button control 28- 95
size box control 28- 124
standard control record
ctlAction field 28- 92
ctlColor field 28- 93
ctiData field 28- 92
ctlFlag field 28- 91
ctiHilite field 28- 91
otlID field 28- 93
ctiMoreFlags field 28- 93
ctINext field 28- 91
ctlOwner field 28- 91
ctiProc field 28- 92
ctiRect field 28- 91
ctIRefCon field 28- 92
ctiReserved field 28- 93
ctivalue field 28- 91
clVersion field 28- 94
fCtCanBeTarget flag 28- 93
fCtisMultiPart flag 28- 94
fCtProcRefNotPir flag 28-

94

fCulTarget flag 28- 15, 25, 31,

93

fCtiTellAboutSize flag 28-

94

fCtiWantEvents flag 28- 93
standard control record 28- 89

static text control 28- 127
TextEdit control 28- 131

Beta Draft

extended control records 28- 89-142
extended controls 28- 7
extended controls 28- 33, 89

F

FASTFONT 43- 3

fFromUser Print Manager parameter
42-2

fFromUser Print Manager parameter
F- 14

FFSetUpSound 47- 18

FFSoundDoneStatus 47- 2

FFSoundDoneStatus F- 16

FFStartPlaying 47- 20

FFStartSound 47- 3

FFStartSound F- 17

fidelity, in ADPCM compression 27- 4

file name separator characters 48- 3

file prefixes 48- 2

file type list record, Standard File 48-
9

Filler note command, Note
Sequencer 40- 8

filer notes, Note Sequencer 40- 8

filling a screen region with a pattern
43-3,8

filter procedures in Standard File 48-
4

filter procedures, TextEdit See
TextEdit: filter procedures 49-

filtering keystrokes, in TextEdit 49- 20

filterProc, TERecord field 49- 16, 53

filterProcPtr, TEParamBlock field 49-
16

filterProcPtr, TEParamBlock record
field 49- 43

FindTargetCtl 28- 25

FMStartUp changes 32- 2

font header layout 43- 5

free memory 36-9

freeform synthestzer 47- 3, 18, 20

freeform synthesizer F- 17

freeing space in TextEdit records 49-
78

frequency

Sound Tool Set and 47- 11
frequency registers
Sound Tool Set and 47- 12

G

GCB See generator control block
(GCB)
GDRPrivate 52- 43

30 August 1989

generator contro! block (GCB) 41- 11
generators

active and inactive 47- 2

active and inactive F- 16

allocating 41- 21

deallocating 41- 22

Sound Tool Set and 47- 9
generators, Note Synthesizer 41- 10
GetCodeResConverter 39- 7
GetCtlHandleFromID 28- 26
GetClID 28- 27
GetCtiMoreFlags 28- 28
GetCtlParamPtr 28- 29
GetCurResourceApp 45- 41
GetCurResourceFile 45- 42
GetIndResource 45- 43
GetIndType 45- 45
GetlnterruptState 39- 8
GetIntStateRecSize 39- 9
GetKeyTranslation 31- 5
GetLEDefProc 34- 5
GetlLoc 40- 46
GetMapHandle 45- 46
GetOpenFileRefNum 45- 48
GetPopUpDefProc 37- 21
GetResourceAttr 45- 9, 50
GetResourceSize 45- 51
GetROMResource 39- 9
GetTimer 40- 47
GetVector 39- 2
GetWindowMgrGlobals 52- 31
GS/08 Class 1 input strings, as

resources E- 43
GS/0S Class 1 output strings, as
resources E- 44

H

heartbeat task 39- 2

HideMenuBar 37- 22

hiding the menu bar 37- 22

highlighted, list items 35- 3

highlighted, list items F- 9

HomeResourceFile 45- 52

hook routines, TextEdit See TextEdit:
hook routines 49-

horizontal scrolling, and TaskMaster
52-3

1

icon button control
control record 28- 101
control template 28- 53

icon button control 28- 6, 7

Index X3

‘Apple 1IGS Toolbox Reference, Volume 3

icon button control template E- 15
icon number, in alert windows 52- 7
icons, as resources E- 46
IfGo Register command, Note
Sequencer 40- 17
inactive, list items 35- 2
inactive, list items F- 8
Inc Register command, Note
Sequencer 40- 18
initialize, control definition
procedure routine 28- 13
inserting text, with TextEdit 49- 99
InsertMItem2 37- 23
InstallWithStats 32- 3
instrument table
setting 40- 50
instrument table 40- 50
instruments
assigning to tracks 40- 51
Note Synthesizer 41- 6
instruments 40- 50
interrupt enable bit
Sound Tool Set and 47- 13
interrupt state information
getting 39-8
getting size of 39- 9
setting 39- 11
interrupt state information 39- 4
interrupts, handling sound 47- 6
interrupts, MIDI Tool Set and 38- 22
interrupts, MIDI, Sound Tool Set and
47-17
InvalCils 28- 30
item drawing routines in Standard
File 48- 5
item name, menu, setting 37- 30, 31
item numbers for lists 35- 4, 5, 8, 9, 10

J

job subrecord 42- 2

job subrecord F- 14

journaling and ReadMouse 31- 2

journaling and ReadMouse 39- 10

Jump command, Note Sequencer
40- 12

justification (text) in pictures 44- 2

justification, TextEdit 49- 3

K

keyboard equivalent 37- 6
keyboard input translation 31- 3, 5,7
keyboard interface, TextEdit 49- 11

Beta Draft

keyboard, polling for status of keys
26-3

keyboard, polling for status of keys F-
3

keyFilter, TERecord field 49- 20, 58

KeyRecord, TextEdit record layout
49-59

keystroke equivalent 37- 6

keystroke equivalent E- 10

keystroke equivalents 28- 4, 48

keystroke equivalents 37- 8

keystroke equivalents in Standard
File dialogs 48- 4

keystroke processing in controls 28- 4

keystroke translation 31- 3, 5, 7

keystroke translation E- 47

keystroke translation tables, as
resources E- 47

killing TextEdit records 49- 103

L

LineEdit control
control record 28- 104
control template 28- 56
LineEdit control 28- 6, 8
LineEdit control template E- 18
LineEdit record, new layout 34- 2
list control
control record 28- 107
control template 28- 58, 61
list control 28- 6,9
list control template E- 20
list controls and scroll bars 35- 4
list item numbers 35- 4, 5, 8, 9, 10
List Manager and Print Manager 42- 3
List Manager definitions 35- 2
List Manager definitions F- 8
LoadAbsResource 45- 53
loading tool sets, and version
numbers 51- 2
LoadResource 45- 55
long sequences, compressing 27- 12,
17
Long2Dec Integer Math tool call 33- 2
Long2Dec Integer Math tool call F- 7

M

MakeNextCtlTarget 28- 31
MakeThisCtlTarget 28- 32
MarkResourceChange 45- 57
MatchResourceHandle 45- 58
memory, DOC 41- 10
memory, free 36- 9

X-4 Apple IIGs Toolbox Reference, Volume 3

30 August 1989

menu bar
creating 37- 25
hiding 37- 22
menu bar template 37- 20
menu bar template, as resource E-
53
menu bar, displaying 37- 32
menu caching 37- 6
menu item template 37- 15
menu item template, as resource E-
54
menu itern, naming 37- 30, 31
menu record, changes 37- 6
menu template 37- 18
menu template, as resource E- 50
menu title, setting 37- 29
menus
adding items 37- 23
creating 37- 24
menus, custom, and caching 37- 7
menus, scrolling 37- 5
message center 51- 14
message text, in alert windows 52- 8
MessageByName 51- 14
MIDI clock
operation 38- 6
reading current frequency 38- 48
reading current value 38- 48
setting base value 38- 33
setting frequency 38- 35
starting 38- 34
stopping 38- 34
MIDI dock 38- 23, 33
MIDI commands, Note Sequencer
40-19
MIDI data
ignoring System Exclusive data
38-42
packet format 38- 7
raw data mode 38- 8
reading 38- 49
sending and receiving 38- 6, 24,
37-42, 4647
writing 38- 51
MIDI data input, starting 38- 38
MIDI data input, stopping 38- 39
MIDI data mode, setting 38- 40, 41
MIDI data output, starting 38- 39
MIDI data output, stopping 38- 39
MIDI error vector, setting 38- 37
MIDI input buffer, setting 38- 37
MIDI output buffer, setting 38- 38
MIDI real-time command vector,
selting 38- 36

Apple 1IGS Toolbox Reference, Volume 3

MIDI System Exclusive data 38- 42
MIDI time-stamps
setting base value 38- 33
setting frequency 38- 35
starting 38- 34
stopping 38- 34
MIDI time-stamps 38- 6, 23
MIDI Too! Set
AppleTalk 38- 22
fast access to tool calls 38- 20
interrupts 38- 22
loading and unloading device
drivers 38- 43
service routines
input data routine 38- 9, 12
output data routine 38- 9,
13
real-time command
routine 38- 9, 10, 36
real-time error routine 38-
9,11,37
service routines 38- 9
shutting down 38- 28
starting
sample code 38- 14
starting 38- 6, 27
tool dependencies 38- 7, 23
MID], Note Sequencer and 40- 4
MidiBootInit 38- 26
MidiChannelPressure command,
Note Sequencer 40- 20
MidiClock 38- 33
MidiControl 38- 36

MidiControlChange command, Note ‘

Sequencer 40- 20

MidiDevice 38- 43

Midilnfo 38- 46

MidiNoteOff command, Note
Sequencer 40- 20

MidiNoteOn command, Note
Sequencer 40- 21

MidiPitchBend command, Note
Sequencer 40- 21

MidiPolyphonicKeyPressure
command, Note Sequencer
40- 22

MidiProgramChange command,
Note Sequencer 40- 22

MidiReadPacket 38- 49

MidiReset 38- 30

MidiSelectChannelMode command,
Note Sequencer 40- 22

Beta Draft

MidiSetSysExIHighWord command,
Note Sequencer 40- 23

MidiShutDown 38- 28

MidiStartUp 38- 27

MidiStatus 38- 31

MidiSystemCommon command,
Note Sequencer 40- 24

MidiSystemExclusive command,
Note Sequencer 40- 23

MidiSystemRealTime command,
Note Sequencer 40- 25

MidiVersion 38- 29

MidiWritePacket 38- 51

moreFlags, TEParamBlock record
field 49- 40

mouse interface, TextEdit 49- 11

mouse, tracking in TextEdit records
49-76

multifile teply record, Standard File
48-8

multipart controls, control definition
procedure routines 28- 19

Musical Instrument Digital Interface
(MIDD) 38- 2

N

naming print documents 42- 3, 6, 9
network printer, getting information
about 42- 10
new desk accessories 29- 2, 9
NewControl2 28- 33
NewList2 35- 6
NewMenu2 37- 24
NewMenuBar2 37- 25
NewWindow2 52- 32
NextMember2 35- 8
note commands, Note Sequencer
40-7
Note Sequencer
command interpreter 40- 5
initializing 40- 38
interrupt mode 40- 39
toal dependencies 40- 3
update rate 40- 39
Note Sequencer commands
control commands 40- 10
MIDI commands 40- 19
note commands 40- 7
register commands 40- 16
note sequences
controlling tempo 40- 49
getting information about 40- 46
playing 40- 60

30 August 1989

starting 40- 53, 55
stopping 40- 62
stopping and starting 40- 45
timing 40- 3
turning off notes 40- 48
note sequences 40- 26
Note Synthesizer
setting update rate 41- 15, 26
sound envelopes 41- 4
starting 41- 15
starting and using 41- 2
tool dependencies 41- 2
Note Synthesizer instruments 41- 6
NoteOff 41- 2, 23
NoteOff command, Note Sequencer-
40-9
NoteOn 41- 2, 24
NoteOn command, Note Sequencer
40-9
notes
turning off 41- 20, 23
turning on 41- 24
notes off, tuming Note Sequencer 40-
15
notify multipart, control definition
procedure routine 28- 19
NotifyCtls 28- 35
NSBootlnit 41- 14
NSReset 41- 18
NSSetUpdateRate 41- 26
NSSetUserUpdateRtn 41- 27
NSShutDown 41- 16
NSStartUp 41- 15
NSStatus 41- 19
NSVersion 41- 17

0

OpenResourceFile 45- 60
oscillator enable register
Sound Tool Set and 47- 16
oscillator interrupt register
Sound Tool Set and 47- 16
oscillators
Sound Tool Set and 47- 9
oscillators, used to form generators
41-10
out-of-memory queue 36- 2
out-of-memory routines 36- 2, 8, 10
out-of-memory routines, and
TextEdit 49- 78

P
PackBytes 39- 2

Index X-5

Apple 1IGS Toolbox Reference, Volume 3

PackBytes F- 13
page orientation, getting information
about 42- 7
Pascal strings, as resource E- 56
password fields 34- 2
pasting text with TextEdit 49- 110
pattern filling 43- 3, 8
patterns (drawing)
640 mode 43- 3
patterns, Note Sequencer 40- 26
phrase done flag 40- 26
phrases, Note Sequencer 40- 26
picture control
control record 28- 110
picture control 28- 6, 9
picture control template E- 24
Pitch Bend command, Note
Sequencer 40- 13
pitchbend, Note Synthesizer
parameter 41- 12
pitchbendRange, Note Synthesizer
parameter 41- 8
PMLoadDriver 42- 4
PMStartUp Print Manager call 42- 3
PMUnloadDriver 42- 5
pop-up control 28- 10
pop-up menu control
control record 28- 113
control template 28- 63
pop-up menu control 28- 6
pop-up menu control template E-
26
pop-up menus
defining and using 37- 12
with other Menu Manager calls
37-13
pop-up menus 37- 8
PopUpMenuSelect 37- 27
port state and Control Manager tool
calls 28-3
port state and Control Manager tool
calls F- 5
PostScript fonts, printing with 42- 3
PrChoosePrinter Print Manager call
42-3
PrGetDocName 42- 6
PrGetNetworkName 42- 10
PrGetPgOrientation 42- 7
PrGetPortDviName 42- 11
PrGetPrinterDviName 42- 12
PrGetPrinterSpecs 42- 8
PrGetUserName 42- 13
PrGetZoneName 42- 14
print documents, naming 42- 3, 6, 9

Beta Draft

Print Manager and List Manager 42- 3

print zone name, getting information
about 42- 14

printer driver, getting information
about 42- 12

printer port driver, getting
information about 42- 11

printer, getting information about 42-
8

printing TextEdit text 49- 108

priorityIncrement, Note Synthesizer
parameter 41- 8

PrjobDialog Print Manager call 42- 2

PrjobDialog Print Manager call F- 14

Program Change command, Note
Sequencer 40- 14

PrPicFile Print Manager call 42- 2

PrPicFile Print Manager call F- 14

PrPixelMap Print Manager call 42- 2

PrPixelMap Print Manager call F- 14

PrSetDocName 42- 9

Q

queues and queue handling 39- 3
queues, adding entries 39- 5
queues, deleting entries 39- 6

R

radio button control
control template 28- 69
extended control record 28- 118
new features 28- 11
radio button control template E- 30
rAlentString resource type E- 2
rClinputString, resource type E- 43
rC10utputString, resource type E- 44
rControlList resource type E- 3
rControlTemplate
check box control template E- 13
icon button control template E-
15
keystroke equivalent E- 10
LineEdit control template E- 18
list control template E- 20
picture control template E- 24
pop-up menu control template
E-26
radio button control template E-
30
scroll bar contro! template E- 32
simple button control template
E-11
size box control template E- 34

X-6 Apple IIGs Toolbox Reference, Volume 3

30 August 1989

standard header E- 5
static text control template E- 36
TextEdit control template E- 38
rControlTemplate resource type E- 4
CString, resource type E- 45
readConfig parameters, in ADB
ReadKeyMicroData call 26- 2
readConfig parameters, in ADB
ReadKeyMicroData call F- 2
ReadDOCReg 47- 21
ReadMouse2 39- 10
RealFreeMem 36- 9
record size, control definition
procedure routine 28- 13
reference types 28- 5
register commands, Note Sequencer
40- 16
release 41- 3
ReleaseResource 45- 62
ReleaseROMResource 39- 10
releaseSegment, Note Synthesizer
parameter 41- 7
RemoveCDA 29- 8
RemoveFromOOMQueue 36- 10
RemoveFromQueue 39- 3
RemoveFromRunQ 29- 7
RemoveNDA 29- 9
RemoveResource 45- 63
removing text, with TextEdit 49- 80
replacing text with TextEdit 49- 113
reply record, Standard File 48- 6
ResetMember2 35- 9
ResizeWindow 52- 4, 35
resource attributes
getting 45- 50
setting 45- 68
resource converters
loading code resources 39- 7
ReadResource 45- 21
ReturnDiskSize 45- 25
WriteResource 45- 23
resource converters 45- 20, 64
resource files
adding resources 45- 34
changing search sequence 45- 13,
67, 69
“creating 45- 39
current 45- 36
current file 45- 12
current, finding 45- 42
file ID 45- 60
file IDs 45- 11 ,
format and content 45- 11, 13
free block layout 45- 18

.

Apple 1IGS Toolbox Reference, Volume 3

getting GS/OS reference number
. for 45-48
geiting resource map 45- 46
header layout 45- 15
last file 45- 12
map layout 45- 16
opening 45- 60
reference record layout 45- 19
search sequence 45- 12
system 28- 5
system 45- 8, 36
resource files 45- 5
resource free block layout 45- 18
resource header layout 45- 15
resource ID 45- 5
resource IDs
getting unique 45- 73
setting 45- 70
Resource Manager
getting current user ID 45- 41
starting 45- 8
resource map layout 45- 16
resource map, getting, for a resource
file 45- 46
resource names 45- 7
resource names, as resource E- 57
resource reference record layout 45-
19
resource search sequence 45- 12
resource types
counting 45- 38
_getting by index 45- 45
resource types 45- 5
ResourceBootInit 45- 28
ResourceConverter 45- 20, 64
ResourceReset 45- 32
resources
adding to resource files 45- 34
and Control Manager 28- 5
and Window Manager 52- 32
and Window Manager E- 68, 72
attributes of 45- 9
changing 45- 57, 75
controlling loading from disk 45-
71
copying 45- 40
counting 45- 37
defined 45- 2
deleting from resource file 45- 63
detaching 45- 40
finding by handle 45- 58
finding file for 45- 52
getting by index 45- 43
getting size of 45- 51

Beta Draft

loading 45- 55

loading at absolute address 45- 53

removing from memory 45- 62
removing from resource file 45-
63

using 45-2, 8

writing to disk 45- 76
ResourceShutDown 45- 30
ResourceStartUp 45- 29
ResourceStatus 45- 33
ResourceVersion 45- 31
rlcon, resource type E- 46
KTransTable, resource type E- 47
rListRef, resource type E- 49
rMenu, resource type E- 50
rMenuBar, resource type E- 53
rMenultem, resource type E- 54
£PString, resource type E- 56
rResName, resource type E- 57
rStringList, resource type E- 59
rText, resource type E- 60
rTextBlock, resource type E- 61
rTextBox2, resource type E- 62
rToolStartup, resource type E- 63
rTwoRedts, resource type E- 65
run item layout 29- 3
fun queue

adding run items 29- 6

example 29- 5

removing run items 29- 7
run queue 29- 3
rWindColor, resource type E- 66
rWindParaml, resource type E- 68
rWindParam2, resource type E- 72

S

sample code

application switcher and
Resource Manager 45- 26

control templates 28- 83

creating empty menus 37- 4

fast access to MIDI Tool Set
routines 38- 20

FFStartSound 47- 5

FFStartSound F- 19

note sequence with relative
addressing 40- 58

Note Sequencer 40- 28

Note Synthesizer 41- 25

out-of-memory routines 36- 5

reading time-stamped MIDI data
38-16

run queue 29- 5

30 August 1989

Standard File dialog templates 48-
13
starting the MIDI Too! Set 38- 14
TaskMasterContent 52- 37
TaskMasterKey 52- 40
TextEdit control with TaskMaster
49-6
TextEdit control without
TaskMaster 49- 7
TextEdit record that is not a
control 49- 9
writing time-stamped MIDI data
38-18
sample rates
Sound Tool Set and 47- 10
scroll bar control
control template 28- 71
extended control record 28- 121
new features 28- 11
scroll bar control 28- 4
scroll bar control barArrowBack
entry 28- 3
scroll bar control barArrowBack
entry F- 5
scroll bar control template E- 32
scroll bars and list controls 35- 4
scroll bars, in TextEdit 49- 28
scrolling menus 37- 5
scrolling text in TextEdit 49- 116
scrolling, horizontal, and TaskMaster
52-3
search sequence, resource 45- 12

 SeedFill 43- 8

selected, list items 35- 2

selected, list items F- 9

selection, clearing TextEdit 49- 75

selection, copying with TextEdit 49-
79

selection, getting information about
current TextEdit 49- 87

selection, getting information about
styles in TextEdit 49- 88

selection, setting the current TextEdit
49-120

SelectMember2 35- 10

SendEventToCtl 28- 36

separator character, in alert windows
52-8

separator characters in file names 48-
3

SeqAllNotesOff 40- 48

SegBootlnit 40- 37

Index X-7

Apple 1IGS Toolbox Reference, Volume 3

seqltems (Note Sequencer sequence
items) See Note Sequencer:
sequence items 40-
SegReset 40- 43
SeqShutDown 40- 41
SeqStartUp 40- 38
SeqStatus 40- 44
sequences (note) See note sequences
40-
SeqVersion 40- 42
Set Register command, Note
Sequencer 40- 18
SetAutoKeyLimit 31- 6
SetCilID 28- 38
SetCtIMoreFlags 28- 39
SetCtlParamPtr 28- 40
SetCurResourceApp 45- 66
SetCurResourceFile 45- 13, 67
SetDefault TPT 51- 17
SetDOCReg 47- 23
Setner 40- 49
SetInputDevice tool call 50- 2
SetInstTable 40- 50
SetInterruptState 39- 11
- SetKeyTranslation 31- 7
SetMenuTitle2 37- 29
SetMItem2 37- 30
SetMitemName2 37- 31
SetOriginalMask 52- 3
SetOutputDevice too! call 50- 2
SetResourceAttr 45- 9, 68
SetResourceFileDepth 45- 13, 69
SetResourcelD 45- 70
SetResourceLoad 45- 71
SetTrkInfo 40- 51
SetUserSoundIRQV 47- 6
SetVector 39- 2
SetZoomRect 52- 2
SetZoomRect F- 20
SFAllCaps 48- 27
SFGetFile2 48- 28
SFMultGet2 48- 30
SFPGetFile2 48- 32
SFPMultiGet2 48- 34
SFPPutFile2 48- 36
SFPutFile2 48- 39
SFReScan 48- 41
SFShowlnvisible 48- 42
ShowMenuBar 37- 32
ShutDownTools 51- 2, 18
simple button control
control template 28- 49
extended control record 28- 95
new features 28-7

Beta Draft

simple button control template E- 11
size box control
control template 28- 73
extended control record 28- 124
new features 28- 11 ,
size box control color table 28- 2
size box control color table F- 4
size box control template E- 34
size characters, in alert windows 52- 6
SizeWindow 52- 4
Slot Arbiter 50- 2
smart cut and paste, TextEdit 49- 3
SortList2 35- 11
sound envelopes
attack, decay, sustain, release 41- 2
breakpoints and increments 41- 4
data structures 41- 7
duration of 41- 5
Note Synthesizer 41- 4
sound envelopes 41- 2
sound on the Iigs, introduction to
47-7
sound tools, version requiremen
47-6 '
sounds, playing 47- 20
sounds, preparing to play 47- 18
special characters, in alert window
alert strings 52-9
SpecialRect 43- 15
Standard File limits 48- 2
StartFrameDrawing 52- 36
starting and stopping tool sets 51- 2,
4,18,19
starting tool sets 51- 19
StartInts 40- 52
StartSeq 40- 53
StartSeqRel 40- 55
StartStop record, as resource E- 63
StartStop record, starting and
stopping tool sets 51- 4
StartUpTools 51- 2, 19
static text control
control record 28- 127
control template 28- 75
static text control 28- 6, 11
static text control template E- 36
StepSeq 40- 60
Stoplnts 40- 61
stopping tool sets 51- 18
StopSeq 40- 62
Styleltem, TextEdit record layout 49-
62
styles, changing TextEdit 49- 124

X-8 Apple IIGS Toolbox Reference, Volume 3

30 August 1989

subsequences, in compression 27-
12,17

SuperBlock, TextEdit record layout
49- 63

SuperHandle, TextEdit record layout
49- 64

Superltem, TextEdit record layout
49- 65

sustaing1- 3

synthesizer voices 47- 9

system resource file 28- 5

T

tab, control definition procedure
routine 28- 18

Tabltem, TextEdit record layout 49-
66

target control 28- 5, 18, 25, 31, 32, 36

target controls 49- 2, 74, 81

target, control definition procedure
routine 28- 15

task record, new definition 52- 17

TaskMaster 52- 17, 37, 39, 40

TaskMaster result codes 52- 12

TaskMasterContent 52- 37

TaskMasterDA 52- 39

TaskMasterKey 52- 40

TEActivate 49- 74

TEBootInit 49- 69

TEClear 49- 75

TEClick 49- 76

TEColorTable, TextEdit data
structure 49- 30

TECompactRecord 49- 78

TECopy 49- 79

TECut 49- 80

TEDeactivate 49- 81

TEFormat, TextEdit data structure
49- 34

TEGetDefProc 49- 82

TEGetInternalProc 49- 83

TEGetLastError 49- 84

TEGetRuler 49- 85

TEGetSelection 49- 87

TEGetSelectionStyle 49- 88

TEGetText 49- 91

TEGetTextInfo 49- 95

TEIdle 49- 98

TEInsert 49- 99

TEKey 49- 102

TEKill 49- 103

templates

control 28 6

Apple 1IGS Toolbox Reference, Volume 3

templates, Menu Manager
menu bar template 37- 20
menu item template 37- 15
menu template 37- 18
templates, Menu Manager 37- 15-20
Tempo command, Note Sequencer
40- 14
TENew 49- 104
TEOffsetToPoint 49- 106
TEPaintText 49- 108
TEParamBlock 49- 3
TEParamBlock, TextEdit data
structure 49- 36
TEParamBlock, TextEdit record 49-
104
TEPaste 49- 110
TEPointToOffset 49- 111
TERecord
filterProc field 49- 53
handles to 49- 11
keyFilter field 49- 58
textFlags field 49- 53
theBufferHPos field 49- 58
theBufferVPos field 49- 58
theFilterRect field 49- 58
theKeyRecord field 49- 58
wordBreakHook field 49- 57
wordWrapHook field 49- 58
TERecord 49- 3
TERecord, TextEdit record layout 49-
47
TEReplace 49- 113
TEReset 49- 72
terminator character, in alert
windows 52- 8
TERuler, TextEdit record layout 49-
44
TEScroll 49- 116
TESetRuler 49- 118
TESetSelection 49- 120
TESetText 49- 121
TEShutDown 49- 71
TEStartUp 49- 70
TEStatus 49- 73
TEStyle, TextEdit record layout 49- 46
TEStyleChange 49- 124
TEUpdate 49- 127
TEVersion 49- 72
text justification in pictures 44- 2
TextBlock, TextEdit record layout 49-
67
TextEdit
activating records 49- 74
and Control Manager 49- 14

Beta Draft

changing style information 49-
124

clearing selection 49- 75

compressing records 49- 78

copying text 49- 79

creating new records 49- 104

current selection 49- 87, 88

custom scroll bars 49- 28

cutting text 49- 80

data structures 49- 29-68

deactivating records 49- 81

disposing of records 49- 103

error processing 49- 84

features 49- 2

filter procedures 49- 15-27

generic filter procedure
doEraseBuffer 49- 18
doFEraseRect 49- 17

doRectChanged 49- 19
generic filter procedure 49- 16
hook routines 49- 15-27
inserting text 49- 99
justification 49- 3
keyboard and mouse interface

49-11
KeyRecord 49- 59
keystroke filter procedure 49- 20
keystroke processing 49- 102
pasting text 49- 110
printing with 49- 108
replacing text 49- 113
scrolling text 49- 116
setting current selection 49- 120
smart cut and paste 49- 3
Styleltem 49- 62
SuperBlock 49- 63
SuperHandle 49- 64
Superltem 49- 65
Tabltem 49- 66
TEColorTable 49- 30
TEFormat 49- 34
TEParamBlock 49- 36
TERecord 49- 47
TERuler 49- 44
TEStyle 49- 46
TextBlock 49- 67
TextList 49- 68
tracking the mouse 49- 76
word break hook routine 49- 26
word wrap hook routine 49- 24

TextEdit control
control record 28- 131
control template 28- 77

30 August 1989

TextEdit control 28- 6, 12

TextEdit contro! template E- 38

TextEdit records 49- 2

textFlags, TEParamBlock record field
49- 41

textFlags, TERecord field 49- 53

TextList, TextEdit record layout 49- 68

theBufferHPos, TERecord field 49-
18,58

theBufferVPos, TERecord field 49- 18,
58

theChar, TERecord KeyRecord field
49-20,23

theFilterRect, TERecord field 49- 17,
18,19, 58

thelnputHandle, TERecord
KeyRecord field 49- 20, 23

theKeyRecord, TERecord field 49- 58

theModifiers, TERecord KeyRecord
field 49- 20, 23

theOpCode, TERecord KeyRecord
field 49- 22, 23

time-stamps, reading MIDI data with
38- 16

time-stamps, writing MIDI data with
38-18

timing, in note sequences 40- 3

title, menu, setting 37- 29

tmContentControls taskMask flag 52-
37

tool set dependencies 51- 8

tool set numbers 51- 6

Turn Notes Off command, Note
Sequencer 40- 15

turning off notes in sequences 40- 48

type 1 pop-up menus 37- 10

type 2 pop-up menus 37- 10

U

UniqueResourcelD 45- 73
UnPackBytes 39- 2
UnPackBytes F- 13
UpdateResourceFile 45- 75
user ID, getting, for Resource
Manager 45- 41

. user name, getting information

about 42- 13

Vv

vectors, new system 39- 2
version numbers, tool set 51- 2
veriBar, TEParamBlock field 49- 28

Index X-9

Apple 1IGS Toolbox Reference, Volume 3 Bela Draft

Vibrato Depth command, Note
Sequencer 40- 15
vibratoDepth, Note Synthesizer
parameter 41- 8, 13
vibratoSpeed, Note Synthesizer

parameter 41- 8
voices, synthesizer 47- 9
volume register

Sound Tool Set and 47- 13

w

wave forms
Sound Tool Set and 47- 11
waveform data sample register
Sound Tool Set and 47- 13
waveform table register
Sound Tool Set and 47- 13
waveList, Note Synthesizer parameter
41-9
WindNewRes 52- 2
WindNewRes F- 20
window change, control definition
procedure routine 28- 20
window record, new definition 52-
14
window size, control definition
procedure routine 28- 17
word break, in TextEdit 49- 26
word wrap, in TextEdit 49- 24
wordBreakHook, TERecord field 49-
26,57
wordWrapHook, TERecord field 49-
24,58
WriteResource 45- 76

X-10 Apple 11Gs Toolbox Reference, Volume 3

30 August 1989

THE APPLE PUBLISHING SYSTEM

This Apple manual was written,
edited, and composed on a
desktop publishing sKstem
using Apple Macintosh®
computers and

Microsoft® Word software,
Proof and final pages were
created on the Apple
LaserWriter® printers. Line art
was created using Adobe
Tlustrator™, POSTSCRIPT®, the
page-description language for
the LaserWriter, was developed
by Adobe Systems
Incorporated.

Text type and display type are
Apple’s corporate font, a
condensed version of
Garamond. Bullets are ITC Zapf
Dingbats®. Some elements,
such as program listings, are set
in Apple Courier.

